Neural-network variational quantum algorithm for simulating many-body dynamics

We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wavefunction ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost without suffering from the vanishing gradient (or barren plateau) issue. Using a qubit recycling strategy, only one ancilla qubit is required to represent all the hidden spins in an RBM architecture. The variational algorithm is extended to open quantum systems by employing a stochastic Schrodinger equation approach. Numerical simulations of spin-lattice models demonstrate that our algorithm is capable of capturing the dynamics of closed and open quantum many-body systems with high accuracy.

[1]  W. Marsden I and J , 2012 .

[2]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[3]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[4]  Masuo Suzuki,et al.  Quantum Monte Carlo Methods in Condensed Matter Physics , 1993 .

[5]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[6]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[7]  Lu-Ming Duan,et al.  Machine learning meets quantum physics , 2019, Physics Today.

[8]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[9]  A. Sandvik,et al.  Quantum Monte Carlo with directed loops. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[11]  Markus Heyl,et al.  Quantum Many-Body Dynamics in Two Dimensions with Artificial Neural Networks. , 2020, Physical review letters.

[12]  C. Schneider,et al.  Signatures of a dissipative phase transition in photon correlation measurements , 2017, 1707.01837.

[13]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[14]  Michele Fabrizio,et al.  Localization and Glassy Dynamics Of Many-Body Quantum Systems , 2011, Scientific Reports.

[15]  Y. Li,et al.  Variational Quantum Simulation of General Processes. , 2018, Physical review letters.

[16]  A. Gorshkov,et al.  Hilbert-Space Fragmentation from Strict Confinement. , 2019, Physical review letters.

[17]  Alexandra Nagy,et al.  Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. , 2019, Physical review letters.

[18]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[19]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[20]  Sabre Kais,et al.  Quantum machine learning for electronic structure calculations , 2018, Nature Communications.

[21]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[22]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[23]  N. Regnault,et al.  Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. , 2019, Physical review letters.

[24]  G. Carleo,et al.  Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space , 2016, 1612.06392.

[25]  Nobuyuki Yoshioka,et al.  Constructing neural stationary states for open quantum many-body systems , 2019, Physical Review B.

[26]  G. Carleo,et al.  Light-cone effect and supersonic correlations in one- and two-dimensional bosonic superfluids , 2013, 1310.2246.

[27]  P. Zoller,et al.  Emerging Two-Dimensional Gauge Theories in Rydberg Configurable Arrays , 2019, Physical Review X.

[28]  Michael J. Hartmann,et al.  Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. , 2019, Physical review letters.

[29]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[30]  D Ceperley,et al.  Quantum Monte Carlo , 1986, Science.

[31]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[32]  James S. Langer,et al.  Annual review of condensed matter physics , 2010 .

[33]  Shengyu Zhang,et al.  Unitary-coupled restricted Boltzmann machine ansatz for quantum simulations , 2019, npj Quantum Information.

[34]  Claudio Chamon,et al.  Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. , 2004, Physical review letters.

[35]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[36]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[37]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[38]  L. Capriotti,et al.  Green function Monte Carlo with stochastic reconfiguration: An effective remedy for the sign problem , 2000 .

[39]  F. Pollmann,et al.  Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians , 2019, Physical Review X.

[40]  J. Lou,et al.  Sweeping cluster algorithm for quantum spin systems with strong geometric restrictions , 2018, Physical Review B.

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  A. Green,et al.  Real- and Imaginary-Time Evolution with Compressed Quantum Circuits , 2020, PRX Quantum.

[43]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[44]  F. Alet,et al.  Many-body localization: An introduction and selected topics , 2017, Comptes Rendus Physique.

[45]  D. Huse,et al.  Many-body localization phase transition , 2010, 1003.2613.

[46]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[47]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[48]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[49]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[50]  Dario Poletti,et al.  Transfer learning for scalability of neural-network quantum states. , 2019, Physical review. E.

[51]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[52]  M. Imada,et al.  Time-dependent many-variable variational Monte Carlo method for nonequilibrium strongly correlated electron systems , 2015, 1507.00274.

[53]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .

[54]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[55]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[56]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[57]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[58]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[59]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[60]  F. Pollmann,et al.  Dynamics of strongly interacting systems: From Fock-space fragmentation to many-body localization , 2019, Physical Review B.

[61]  H. Blote,et al.  Roughening transitions and the zero-temperature triangular Ising antiferromagnet , 1982 .

[62]  K. Damle,et al.  Quantum cluster algorithm for frustrated Ising models in a transverse field , 2015, 1512.00931.

[63]  A. Houck,et al.  Observation of a Dissipation-Induced Classical to Quantum Transition , 2013, 1312.2963.

[64]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[65]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[66]  R. Nandkishore,et al.  Fractons , 2018, Annual Review of Condensed Matter Physics.