A Robust Controller Interpolation Design Technique

Switching or blending among controllers is termed controller interpolation. This paper investigates a robust controller interpolation technique and applies it to an experimental test bed. Although an interpolated controller is composed of linear time-invariant (LTI) controllers stabilizing the LTI plant, closed-loop performance and stability are not guaranteed. Thus, it is of interest to design the interpolated controller to guarantee closed-loop stability and a performance level for all interpolation signals describing controller switching sequences and combinations. The performance metric that is under investigation in this paper is the H ¿ norm. A suboptimal robust interpolated-controller design algorithm is framed in terms of bilinear matrix inequalities. The motivating example demonstrates the efficacy of the robust interpolated-controller design.

[1]  Karolos M. Grigoriadis,et al.  H/sub /spl infin// and L/sub 2/-to-L/sub /spl infin// gain control of linear parameter-varying systems with parameter-varying delays , 2003 .

[2]  Andrew G. Alleyne,et al.  Gain scheduled control of an air conditioning system using the Youla parameterization , 2006 .

[3]  Ian Postlethwaite,et al.  Linear conditioning for systems containing saturating actuators , 2000, Autom..

[4]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[5]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[6]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[7]  Andrew G. Alleyne,et al.  Modeling and H2/H∞ MIMO Control of an Earthmoving Vehicle Powertrain , 2002 .

[8]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[9]  Andrew G. Alleyne,et al.  Generalized Multivariable Gain Scheduling With Robust Stability Analysis , 2005 .

[10]  Fen Wu,et al.  Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions , 2005, Proceedings of the 2005, American Control Conference, 2005..

[11]  João P. Hespanha Tutorial on Supervisory Control , 2001 .

[12]  Luca Zaccarian,et al.  The I (l2) bumpless transfer problem for linear plants: Its definition and solution , 2005, Autom..

[13]  I. Postlethwaite,et al.  High-performance architecture for design and analysis of robust anti-windup compensators , 2006, 2006 American Control Conference.

[14]  João Pedro Hespanha,et al.  Switching between stabilizing controllers , 2002, Autom..

[15]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[16]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[17]  Douglas A. Lawrence,et al.  GAIN SCHEDULED MISSILE AUTOPILOT DESIGN USING A CONTROL SIGNAL INTERPOLATION TECHNIQUE1 , 1998 .

[18]  João Pedro Hespanha,et al.  Optimal controller initialization for switching between stabilizing controllers , 2007, 2007 46th IEEE Conference on Decision and Control.

[19]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[20]  Christopher Edwards,et al.  Anti-windup and bumpless-transfer schemes , 1998, Autom..

[21]  Manfred Morari,et al.  A unified framework for the study of anti-windup designs , 1994, Autom..

[22]  Andrew G. Alleyne,et al.  Robust Controller Interpolation via Parameterization , 2008 .

[23]  Matthew C. Turner,et al.  An Architecture for Design and Analysis of High-Performance Robust Antiwindup Compensators , 2007, IEEE Transactions on Automatic Control.

[24]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[25]  Andrew G. Alleyne,et al.  Dynamic Emulation Using a Resistive Control Input , 2002 .

[26]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[27]  Matthew C. Turner,et al.  Linear quadratic bumpless transfer , 2000, Autom..

[28]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[29]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[30]  B.P. Rasmussen,et al.  Stable controller interpolation for LPV systems , 2008, 2008 American Control Conference.

[31]  Wilson J. Rugh,et al.  Stability preserving interpolation methods for the synthesis of gain scheduled controllers , 2000, Autom..

[32]  Andrew G. Alleyne,et al.  Optimizing the Efficiency of Electro-Hydraulic Powertrains , 2006 .

[33]  J. Stoustrup,et al.  Bumpless transfer between observer-based gain scheduled controllers , 2005 .

[34]  Atsushi Fujimori Optimization of static output feedback using substitutive LMI formulation , 2004, IEEE Transactions on Automatic Control.

[35]  Jakob Stoustrup,et al.  Switching between multivariable controllers , 2004 .