Stable Convergence Theorems for Infinite Products and Powers of Nonexpansive Mappings

We show that several previously established convergence theorems for infinite products and powers of nonexpansive mappings continue to hold even when summable computational errors are present. Such results find application in methods for solving convex feasibility and optimization problems.

[1]  S. Reich,et al.  Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces , 1979 .

[2]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[3]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[4]  Joel E. Cohen,et al.  Ergodic theorems in demography , 1979 .

[5]  P.L. Combettes On the numerical robustness of the parallel projection method in signal synthesis , 2001, IEEE Signal Processing Letters.

[6]  A. M. Ostrowski,et al.  The Round‐off Stability of Iterations , 1967 .

[7]  Andrzej Stachurski,et al.  Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..

[8]  W. A. Kirk,et al.  Classical Theory of Nonexpansive Mappings , 2001 .

[9]  Ulrich Krause,et al.  Asymptotic Properties for Inhomogeneous Iterations of Nonlinear Operators , 1988 .

[10]  Zbigniew Nitecki,et al.  Differentiable dynamics;: An introduction to the orbit structure of diffeomorphisms , 1971 .

[11]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[12]  A. Zaslavski Turnpike properties in the calculus of variations and optimal control , 2005 .

[13]  S. Reich,et al.  Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property , 1996 .

[14]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[15]  John von Neumann,et al.  Rings of operators , 1961 .

[16]  Yair Censor,et al.  Averaging Strings of Sequential Iterations for Convex Feasibility Problems , 2001 .

[17]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[18]  D. Butnariu,et al.  Stable Convergence Behavior Under Summable Perturbations of a Class of Projection Methods for Convex Feasibility and Optimization Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[19]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .

[20]  P. Lin Unrestricted products of contractions in Banach spaces , 1992, math/9210211.

[21]  R. Nussbaum Some nonlinear weak ergodic theorems , 1990 .

[22]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[23]  P. Porcelli,et al.  On rings of operators , 1967 .

[24]  S. Reich,et al.  Generic Convergence of Infinite Products of Nonexpansive Mappings in Banach and Hyperbolic Spaces , 2001 .

[25]  S. Reich,et al.  Convergence of generic infinite products of nonexpansive and uniformly continuous operators , 1999 .

[26]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .