Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes

Efficient and power-scalable laser operation of a vibronic Tm3+:KLu(WO4)2 microchip laser at ∼2.13 μm is demonstrated. In the continuous-wave mode under diode pumping at ∼805 nm, this laser generated 1.17 W at 2109–2133 nm with a slope efficiency of 39%. This emission is related to the coupling of the electronic transitions of Tm3+ ions with the stretching vibrations of the WOW oxygen bonds in the monoclinic KLu(WO4)2 crystal host appearing at ∼379, 406, and 450 cm−1. The achieved emission wavelength is longer, to our knowledge, than any previously reported laser based on Tm3+ or Ho3+ doped double tungstate crystals. Passive Q-switching of the vibronic Tm3+:KLu(WO4)2 laser is realized with a single-walled carbon nanotube (SWCNT) based saturable absorber, representing the longest wavelength in this mode of operation. In this regime, the maximum output power reached 0.70 W at 2131 nm, corresponding to a slope efficiency of 29%. The pulse characteristics were 25 ns/1.1 μJ at the pulse repetition frequency of 0.62 MHz. These are, we believe, the shortest pulses ever achieved in any lanthanide-based laser passively Q-switched by carbon nanostructures. A conventional (purely electronic transition) Tm3+:KLu(WO4)2 microchip laser at 1.92 μm Q-switched by the same SWCNTs generated 40 ns/4.0 μJ pulses corresponding to a peak power of 0.1 kW, which is a record value for this type of laser oscillator, to our knowledge.

[1]  U. Griebner,et al.  Single-layer graphene saturable absorber for diode-pumped passively Q-switched Tm:KLu(WO4)2 laser at 2 μm , 2015 .

[2]  Shengzhi Zhao,et al.  A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube , 2013 .

[3]  Xavier Mateos,et al.  Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber. , 2015, Optics express.

[4]  P. Loiko,et al.  Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re = Gd, Y, Lu, Yb) , 2011 .

[5]  Xavier Mateos,et al.  Passive Q-switching of the diode pumped Tm3+:KLu(WO4)2 laser near 2-μm with Cr2+:ZnS saturable absorbers. , 2012, Optics express.

[6]  R. Byer,et al.  Continuous-wave operation at 2.1 microm of a diode-laser-pumped, Tm-sensitized Ho:Y(3)Al(5)O(12) laser at 300 K. , 1987, Optics letters.

[7]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[8]  X. Mateos,et al.  Passive Q-switching of Yb bulk lasers by a graphene saturable absorber , 2016 .

[9]  Y. Yang,et al.  Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers. , 2013, Optics express.

[10]  W. Krupke OPTICAL ABSORPTION AND FLUORESCENCE INTENSITIES IN SEVERAL RARE-EARTH-DOPED Y$sub 2$O$sub 3$ AND LaF$sub 3$ SINGLE CRYSTALS , 1966 .

[11]  Leonard A. Pomeranz,et al.  Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .

[12]  Xavier Mateos,et al.  Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber. , 2015, Optics letters.

[13]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[14]  Zhiyi Wei,et al.  Graphene on SiC as a Q-switcher for a 2 μm laser. , 2012, Optics letters.

[15]  U. Griebner,et al.  Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a graphene-based saturable absorber , 2016 .

[16]  U. Griebner,et al.  Ho:KLu(WO4)2 Microchip Laser Q-Switched by a PbS Quantum-Dot-Doped Glass , 2015, IEEE Photonics Technology Letters.

[17]  A. Meijerink,et al.  Vibronic transitions of Tm3+ in various lattices , 1996 .

[18]  Xavier Mateos,et al.  In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency. , 2015, Optics letters.

[19]  U. Griebner,et al.  Microchip laser operation of Tm,Ho:KLu(WO₄)₂ crystal. , 2014, Optics express.

[20]  U. Griebner,et al.  Characterization of the thermal lens in 3 at.%Tm:KLu(WO4)2 and microchip laser operation , 2014 .

[21]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[22]  U. Griebner,et al.  Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser. , 2012, Applied optics.

[23]  J. Zayhowski,et al.  Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.

[24]  Y. Wang,et al.  Passive Q-switching of microchip lasers based on Ho:YAG ceramics. , 2016, Applied optics.

[25]  V. Petrov,et al.  Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host. , 2008, Optics express.

[26]  N. Coluccelli,et al.  High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 microm. , 2009, Optics letters.

[27]  E. Chicklis,et al.  High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Günter Steinmeyer,et al.  Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1μm , 2008 .

[29]  Baoquan Yao,et al.  Comparative optical study of thulium-doped YAlO3 and GdVO4 single crystals , 2007 .

[30]  Günter Steinmeyer,et al.  Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber. , 2009, Optics express.

[31]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[32]  U. Griebner,et al.  Spectroscopic and laser characterization of Yb,Tm:KLu(WO4)2 crystal , 2016 .

[33]  M. Pollnau,et al.  Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.

[34]  M. Tonelli,et al.  Spectroscopy and Diode-Pumped Laser Experiments of LiLuF$_{\bf 4}$:Tm$^{{\bf 3}+}$ Crystals , 2008, IEEE Journal of Quantum Electronics.

[35]  A. Demidovich,et al.  Effect of random distribution and molecular interactions on optical properties of Er3+ dopant in KY(WO4)2 and Ho3+ in KYb(WO4)2 , 1998 .

[36]  W. A. Clarkson,et al.  Efficient Ho : YAG laser pumped by a cladding-pumped tunable Tm : silica-fibre laser , 2004 .

[37]  M. Qi,et al.  A graphene-based passively Q-switched Ho:YAG laser in-band pumped by a diode-pumped Tm:YLF solid-state laser , 2014 .

[38]  A. E. Troshin,et al.  Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal , 2007 .

[39]  D. Shen,et al.  Graphene passively Q-switched Ho:YAG ceramic laser , 2014 .

[40]  Klaus Petermann,et al.  Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm , 2011 .

[41]  Liejia Qian,et al.  Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited] , 2012 .

[42]  M. Tonelli,et al.  Efficient, diode-pumped Tm(3)+:BaY(2)F(8) vibronic laser. , 2004, Optics express.

[43]  P. Loiko,et al.  Thermal lensing in Nm-cut monoclinic Tm:KLu(WO4)2 laser crystal , 2013 .

[44]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[45]  Konstantin V. Yumashev,et al.  Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd, Y, Lu, Yb , 2011 .

[46]  T. Y. Fan,et al.  Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG , 1988 .

[47]  Christian Kränkel,et al.  Rare-Earth-Doped Sesquioxides for Diode-Pumped High-Power Lasers in the 1-, 2-, and 3-μm Spectral Range , 2015 .

[48]  U. Griebner,et al.  Optimization of dopant concentration in Ho:KLu(WO4)2 laser achieving ∼70% slope efficiency , 2013 .

[49]  M. Aguiló,et al.  Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy , 2007 .

[50]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[51]  Xavier Mateos,et al.  Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies. , 2012, Optics letters.

[52]  Xavier Mateos,et al.  Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.

[53]  T. Sudmeyer,et al.  Passively $Q$ -Switched Thulium Microchip Laser , 2016, IEEE Photonics Technology Letters.

[54]  Zheng Cui,et al.  Stable passively Q-switched Ho:LuAG laser with graphene as a saturable absorber , 2014 .

[55]  Xavier Mateos,et al.  Femtosecond Pulses near 2 µm from a Tm:KLuW Laser Mode-Locked by a Single-Walled Carbon Nanotube Saturable Absorber , 2012 .

[56]  T. Südmeyer,et al.  Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power. , 2014, Optics express.