Grain boundary energy function for fcc metals

Abstract Anisotropy of interfacial energy is the principal driving force for thermally driven microstructure evolution, yet its origins remain uncertain and a quantitative description lacking. We present and justify a concise hypothesis on the topography of the functional space of interface energies and, based on this hypothesis, construct a closed-form function that quantitatively describes energy variations in the 5-space of macroscopic parameters defining grain boundary geometry. The new function is found to be universal for the crystallography class of face-centered cubic (fcc) metals.

[1]  D. Wolf,et al.  A broken‐bond model for grain boundaries in face‐centered cubic metals , 1990 .

[2]  Michael F. Ashby,et al.  The structure of grain boundaries described as a packing of polyhedra , 1978 .

[3]  B. Ralph,et al.  A field ion microscope study of atomic configuration at grain boundaries , 1964 .

[4]  Du Q. Huynh,et al.  Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.

[5]  D. Wolf Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes , 1989 .

[6]  H. Gleiter,et al.  A lock-in model for the atomic structure of interphase boundaries between metals and ionic crystals , 1985 .

[7]  E. Holm,et al.  Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni , 2010 .

[8]  A. Sutton,et al.  Overview no. 61 On geometric criteria for low interfacial energy , 1987 .

[9]  R. W. Balluffi,et al.  Interfaces in crystalline materials , 2009 .

[10]  Davis L. Olmsted A new class of metrics for the macroscopic crystallographic space of grain boundaries , 2009 .

[11]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[12]  D. Wolf,et al.  A read-shockley model for high-angle grain boundaries , 1989 .

[13]  W. Bollmann On the geometry of grain and phase boundaries , 1967 .

[14]  J. Taylor,et al.  Metrics, measures, and parametrizations for grain boundaries: a dialog , 2006 .

[15]  D. Wolf Structure-energy correlation for grain boundaries in f.c.c. metals—IV. Asymmetrical twist (general) boundaries , 1990 .

[16]  A. Morawiec Method to calculate the grain boundary energy distribution over the space of macroscopic boundary parameters from the geometry of triple junctions , 2000 .

[17]  David L. Olmsted,et al.  Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy , 2009 .

[18]  W. Bollmann,et al.  Crystal Defects and Crystalline Interfaces , 1970 .

[19]  G. Rohrer Grain boundary energy anisotropy: a review , 2011 .

[20]  P. Wolf,et al.  Crystal growth and crystal curvature near roughening transitions in hcp 4He , 1985 .

[21]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[22]  H. Aaronson,et al.  Anisotropy of coherent interphase boundary energy , 1980 .