Numerical experiments in semi-infinite programming

A quasi-Newton algorithm for semi-infinite programming using an L∞ exact penalty function is described, and numerical results are presented. Comparisons with three Newton algorithms and one other quasi-Newton algorithm show that the algorithm is very promising in practice.

[1]  G. Watson Globally convergent methods for semi-infinite programming , 1981 .

[2]  R. Reemtsen,et al.  Discretization methods for the solution of semi-infinite programming problems , 1991 .

[3]  Bradley M. Bell Global convergence of a semi-infinite optimization method , 1990 .

[4]  A. Tits,et al.  A globally convergent algorithm with adaptively refined discretization for semi-infinite optimization problems arising in engineering design , 1989 .

[5]  Nicholas I. M. Gould,et al.  An exact penalty function for semi-infinite programming , 1987, Math. Program..

[6]  Rainer Hettich,et al.  A note on an implementation of a method for quadratic semi-infinite programming , 1990, Math. Program..

[7]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[8]  Masao Fukushima,et al.  A globally convergent SQP method for semi-infinite nonlinear optimization , 1988 .

[9]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[10]  C. J. Price,et al.  An exact penalty function algorithm for semi-infinite programmes , 1990 .

[11]  I. D. Coope,et al.  A two-parameter exact penalty function for nonlinear programming , 1994 .

[12]  C. C. Gonzaga,et al.  An improved algorithm for optimization problems with functional inequality constraints , 1980 .

[13]  Rainer Hettich,et al.  An implementation of a discretization method for semi-infinite programming , 1986, Math. Program..

[14]  G. A. Watson,et al.  Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems , 1983 .

[15]  D. Mayne,et al.  A surperlinearly convergent algorithm for constrained optimization problems , 1982 .

[16]  André L. Tits,et al.  Erratum: An SQP Algorithm for Finely Discretized Continuous Minimax Problems and Other Minimax Problems with Many Objective Functions , 1998, SIAM J. Optim..

[17]  The obstacle problem for an elastoplastic body , 1990 .

[18]  G. Alistair Watson,et al.  A projected lagrangian algorithm for semi-infinite programming , 1985, Math. Program..