On universal algebra over nominal sets

We investigate universal algebra over the category Nom of nominal sets. Using the fact that Nom is a full reflective subcategory of a monadic category, we obtain an HSP-like theorem for algebras over nominal sets. We isolate a ‘uniform’ fragment of our equational logic, which corresponds to the nominal logics present in the literature. We give semantically invariant translations of theories for nominal algebra and NEL into ‘uniform’ theories, and systematically prove HSP theorems for models of these theories.

[1]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[2]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[3]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[4]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[5]  Alexander Kurz,et al.  Strongly Complete Logics for Coalgebras , 2012, Log. Methods Comput. Sci..

[6]  Marcello M. Bonsangue,et al.  Pi-Calculus in Logical Form , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[7]  P. Johnstone Sketches of an Elephant , 2007 .

[8]  Murdoch James Gabbay Nominal Algebra and the HSP Theorem , 2009, J. Log. Comput..

[9]  Chung-Kil Hur,et al.  Term Equational Systems and Logics: (Extended Abstract) , 2008, MFPS.

[10]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[11]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[12]  Murdoch James Gabbay,et al.  Nominal (Universal) Algebra: Equational Logic with Names and Binding , 2009, J. Log. Comput..

[13]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[14]  Alexander Kurz,et al.  Functorial Coalgebraic Logic: The Case of Many-sorted Varieties , 2008, CMCS.

[15]  Andrew M. Pitts,et al.  Nominal Equational Logic , 2007, Electron. Notes Theor. Comput. Sci..

[16]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[17]  Jirí Adámek,et al.  Algebraic Theories: A Categorical Introduction to General Algebra , 2010 .

[18]  Marcello M. Bonsangue,et al.  Presenting Functors by Operations and Equations , 2006, FoSSaCS.