A backward Monte Carlo study of the multiple scattering of a polarized laser beam

Abstract A backward Monte Carlo estimator is developed to describe the multiple scattering of a polarized, narrow light beam by a plane-parallel medium. The case of a right circularly polarized beam is analyzed in this paper. Results indicate that the diffuse light field is partially polarized even at significant optical radii from the incident light beam. The degree of polarization of the diffuse light field is dependent on the optical thickness of the medium and the size parameter of the scatterers.

[1]  A backward Monte Carlo estimator for the multiple scattering of a narrow light beam , 1996 .

[2]  D. Collins,et al.  Backward monte carlo calculations of the polarization characteristics of the radiation emerging from spherical-shell atmospheres. , 1972, Applied optics.

[3]  R. Steiner,et al.  Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. , 1996, Applied optics.

[4]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[5]  H. A. Ferwerda,et al.  Scattering and absorption of turbid materials determined from reflection measurements. 1: theory. , 1983, Applied optics.

[6]  J. Dave,et al.  Coefficients of the legendre and fourier series for the scattering functions of spherical particles. , 1970, Applied optics.

[7]  E. Fry,et al.  Measurement of the Mueller matrix for ocean water. , 1984, Applied optics.

[8]  Kei Miyanami,et al.  Measurement of local solids concentration in a suspension by an optical method , 1992 .

[9]  Study of polarization of laser radiation scattered 90 deg , 1993 .

[10]  D. O'Brien,et al.  Accelerated quasi Monte Carlo integration of the radiative transfer equation , 1992 .

[11]  B. Wilson,et al.  A Monte Carlo model for the absorption and flux distributions of light in tissue. , 1983, Medical physics.

[12]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[13]  Graeme L. Stephens,et al.  A new polarized atmospheric radiative transfer model , 1991 .

[14]  Boris A. Kargin,et al.  The Monte Carlo Methods in Atmospheric Optics , 1980 .

[15]  S. Pal,et al.  Polarization anisotropy in lidar multiple scattering from atmospheric clouds. , 1985, Applied optics.

[16]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[17]  L. I. Chaikovskaya,et al.  New approach to the polarized radiative transfer problem , 1996 .

[18]  Y. Benayahu,et al.  LIDAR multiple scattering from clouds , 1995 .

[19]  T. Asakura,et al.  Reflectance properties of finite-size turbid media , 1994 .

[20]  Optical Multiple Scattering by Particles , 1994 .

[21]  Toshimitsu Asakura,et al.  Polarization-dependent backscattering patterns from weakly scattering media , 1993 .

[22]  D. Look,et al.  Examination of scattering at 90° from a cylindrical volume illuminated by polarized light. , 1995, Applied optics.

[23]  Bruce R. Barkstrom,et al.  An efficient algorithm for choosing scattering directions in Monte Carlo work with arbitrary phase functions , 1995 .

[24]  Cornelis V. M. van der Mee,et al.  Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere , 1983 .

[25]  S. Jacques,et al.  Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.