Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry.

[1]  Brian Raught,et al.  A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface , 2015, Cell.

[2]  I. Jurisica,et al.  Fundamentals of protein interaction network mapping , 2015, Molecular systems biology.

[3]  Marco Y. Hein,et al.  A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances , 2015, Cell.

[4]  A. Teleman,et al.  PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis , 2015, PLoS genetics.

[5]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[6]  B. Chait,et al.  Rapid, Optimized Interactomic Screening , 2015, Nature Methods.

[7]  Amber L. Couzens,et al.  BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates* , 2015, Molecular & Cellular Proteomics.

[8]  Anne-Claude Gingras,et al.  Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. , 2015, Journal of proteomics.

[9]  Swneke D. Bailey,et al.  BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. , 2015, Journal of proteomics.

[10]  Guomin Liu,et al.  A web‐tool for visualizing quantitative protein–protein interaction data , 2015, Proteomics.

[11]  Laurence Florens,et al.  Proteins interacting with cloning scars: a source of false positive protein-protein interactions , 2015, Scientific Reports.

[12]  Jicheng Duan,et al.  A New in Vivo Cross-linking Mass Spectrometry Platform to Define Protein–Protein Interactions in Living Cells* , 2014, Molecular & Cellular Proteomics.

[13]  V. Doye,et al.  Probing nuclear pore complex architecture with proximity-dependent biotinylation , 2014, Proceedings of the National Academy of Sciences.

[14]  Guomin Liu,et al.  SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. , 2014, Journal of proteomics.

[15]  H. Lähdesmäki,et al.  Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor–independent TCR signaling hub , 2014, Nature Immunology.

[16]  J. Yates,et al.  Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication , 2014, Current Biology.

[17]  Ludovic C. Gillet,et al.  Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system , 2013, Nature Methods.

[18]  Tony Pawson,et al.  Protein Interaction Network of the Mammalian Hippo Pathway Reveals Mechanisms of Kinase-Phosphatase Interactions , 2013, Science Signaling.

[19]  Tony Pawson,et al.  Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition , 2013, Nature Methods.

[20]  Tony Pawson,et al.  Temporal regulation of EGF signaling networks by the scaffold protein Shc1 , 2013, Nature.

[21]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[22]  S. Carr,et al.  Proteomic Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging , 2013, Science.

[23]  M. Blanchette,et al.  Discovery of cell compartment specific protein-protein interactions using affinity purification combined with tandem mass spectrometry. , 2013, Journal of proteome research.

[24]  Franco J. Vizeacoumar,et al.  Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae , 2012, Nature.

[25]  Guomin Liu,et al.  Using ProHits to Store, Annotate, and Analyze Affinity Purification–Mass Spectrometry (AP‐MS) Data , 2012, Current protocols in bioinformatics.

[26]  Amber L. Couzens,et al.  Mass spectrometry approaches to study mammalian kinase and phosphatase associated proteins. , 2012, Methods.

[27]  Wade H. Dunham,et al.  Affinity‐purification coupled to mass spectrometry: Basic principles and strategies , 2012, Proteomics.

[28]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[29]  M. Mann,et al.  Triple SILAC to Determine Stimulus Specific Interactions in the Wnt Pathway , 2011, Journal of proteome research.

[30]  Jyoti S Choudhary,et al.  Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. , 2011, Molecular cell.

[31]  Tony Pawson,et al.  OpenFreezer: a reagent information management software system , 2011, Nature Methods.

[32]  T. Pawson,et al.  Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor , 2011, Nature Biotechnology.

[33]  Hyungwon Choi,et al.  SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data , 2010, Nature Methods.

[34]  Tony Pawson,et al.  ProHits: an integrated software platform for mass spectrometry-based interaction proteomics , 2010, Nature Biotechnology.

[35]  Zhaohui S. Qin,et al.  A Global Protein Kinase and Phosphatase Interaction Network in Yeast , 2010, Science.

[36]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[37]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[38]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[39]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[40]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[41]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.