The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders
暂无分享,去创建一个
[1] Y. Lubin,et al. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae) , 2011, Naturwissenschaften.
[2] Mechthild Melchers. Der beutefang von Cupiennius sam keyserling (Ctenidae) , 1967, Zeitschrift für Morphologie und Ökologie der Tiere.
[3] Jonas O. Wolff,et al. Comparative morphology of pretarsal scopulae in eleven spider families. , 2012, Arthropod structure & development.
[4] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[5] Stanislav N. Gorb,et al. Friction and adhesion in the tarsal and metatarsal scopulae of spiders , 2006, Journal of Comparative Physiology A.
[6] R. Jocqué,et al. Lycosidae : the grassland spiders , 2005 .
[7] N. Platnick,et al. A revision of the celer group of the spider genus Anyphaena (Araneae, Anyphaenidae) in Mexico and Central America. American Museum novitates ; no. 2575 , 1975 .
[8] Jonas O. Wolff,et al. Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae) , 2012, Journal of Experimental Biology.
[9] Carlo Menon,et al. Nonangled anisotropic elastomeric dry adhesives with tailorable normal adhesion strength and high directionality , 2014 .
[10] Koichi Tanaka,et al. Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata , 1989, Oecologia.
[11] Musée royal de l'Afrique centrale,et al. Spider families of the world , 2006 .
[12] Todd A. Blackledge,et al. Viscoelastic solids explain spider web stickiness. , 2010, Nature communications.
[13] F. PÉREZ-MILES. Tarsal Scopula Division in Theraphosinae (Araneae, Theraphosidae): Its Systematic Significance , 1994 .
[14] W. Eberhard,et al. Spiders avoid sticking to their webs: clever leg movements, branched drip-tip setae, and anti-adhesive surfaces , 2012, Naturwissenschaften.
[15] R. Foelix. Structure and function of tarsal sensilla in the spider Araneus diadematus , 1970 .
[16] A. Bauer,et al. Repeated Origin and Loss of Adhesive Toepads in Geckos , 2012, PloS one.
[17] Carlo Menon,et al. Abigaille II: toward the development of a spider-inspired climbing robot , 2011, Robotica.
[18] F. Vollrath,et al. The Role of Behavior in the Evolution of Spiders, Silks, and Webs , 2007 .
[19] B. Opell,et al. van der Waals and hygroscopic forces of adhesion generated by spider capture threads , 2003, Journal of Experimental Biology.
[20] K. Prestwich,et al. The energetics of web-building in spiders , 1977 .
[21] A. L. Turnbull. ECOLOGY OF THE TRUE SPIDERS (ARANEOMORPHAE ) , 1973 .
[22] Jonas O. Wolff,et al. Radial arrangement of Janus-like setae permits friction control in spiders , 2013, Scientific Reports.
[23] M. Berenbaum. Insects and the plant surface , 1988 .
[24] Eugenio Brusa,et al. Attaching mechanisms and strategies inspired by the spiders' leg : Final Report of Ariadna Study nr. 06/6201, in cooperation with the Advanced Concept Team (ACT) of the European Space Agency (ESA) , 2008 .
[25] S. Bellucci. Physical properties of ceramic and carbon nanoscale structures , 2011 .
[26] M. Kuntner,et al. The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb‐like spider webs , 2013 .
[27] Jan-Henning Dirks,et al. Arachnids Secrete a Fluid over Their Adhesive Pads , 2011, PloS one.
[28] D. Maddison,et al. Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .
[29] Jonathan A Coddington,et al. Reconstructing web evolution and spider diversification in the molecular era , 2009, Proceedings of the National Academy of Sciences.
[30] D. Logunov. Salticidae of Middle Asia. 3. A new genus, Proszynskiana gen. n., in the subfamily Aelurillinae (Araneae, Salticidae) , 1996 .
[31] B. Opell,et al. The material cost and stickiness of capture threads and the evolution of orb‐weaving spiders , 1997 .
[32] A. D. Blest,et al. The spiders of New Zealand , 1967 .
[33] P. Jäger. Observations on web-invasion by the jumping spider Thyene imperialis in Israel (Araneae: Salticidae) , 2012 .
[34] R J Full,et al. Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives , 2007, Proceedings of the National Academy of Sciences.
[35] A B Kesel,et al. Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata , 2003, Journal of Experimental Biology.
[36] Pedro Cardoso,et al. Global Patterns of Guild Composition and Functional Diversity of Spiders , 2011, PloS one.
[37] Jochen Speck,et al. Vibration sensitivity of pretarsal slit sensilla in the spider leg , 1982, Journal of comparative physiology.
[38] J. Coddington. Phylogeny and Classification of Spiders , 2005 .
[39] C. Wissel,et al. A comparison of prey lengths among spiders , 1986, Oecologia.
[40] N. Pugno. Nanotribology of Spiderman , 2011 .
[41] R. Foelix,et al. The biology of spiders. , 1987 .
[42] S. Gorb,et al. Evolution of locomotory attachment pads of hexapods , 2001, Naturwissenschaften.
[43] W. Nentwig. Spider Ecophysiology , 2013, Springer Berlin Heidelberg.
[44] H. W. Levi,et al. Systematics and Evolution of Spiders (Araneae) , 1991 .
[45] H. Homann,et al. Haften Spinnen an einer Wasserhaut? , 2004, Naturwissenschaften.
[46] Ce Jeffree,et al. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution , 1986 .
[47] S. Gorb,et al. From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[48] Carlo Menon,et al. A Point-Wise Model of Adhesion Suitable for Real-Time Applications of Bio-Inspired Climbing Robots , 2008 .