On Exponentiable Morphisms in Classical Algebra

We study exponentiability of homomorphisms in varieties of universal algebras close to classical ones. After describing an “almost folklore” general result, we present a purely algebraic proof of “étale implies exponentiable”, alternative to the topologically motivated proof given in one of our previous papers, in a different context. We prove that only isomorphisms are exponentiable homomorphisms in ideal determined varieties and extend this to ideal determined categories. Finally, we give a complete characterization of exponentiable homomorphisms of semimodules over semirings.

[1]  W. Tholen,et al.  Semi-abelian categories , 2002 .

[2]  Ernest G. Manes,et al.  Taut Monads and T0-spaces , 2002, Theor. Comput. Sci..

[3]  James S. Johnson,et al.  On modules over a semiring , 1970 .

[4]  S. Lane Categories for the Working Mathematician , 1971 .

[5]  Z. Janelidze THE POINTED SUBOBJECT FUNCTOR, 3 3 LEMMAS, AND SUBTRACTIVITY OF SPANS Dedicated to Dominique Bourn on the occasion of his sixtieth birthday , 2010 .

[6]  A. Ursini,et al.  Ideals in universal algebras , 1984 .

[7]  Saunders MacLane,et al.  Duality for groups , 1950 .

[8]  P. J. Higgins Groups with Multiple Operators , 1956 .

[9]  G. Janelidze,et al.  Ideals and clots in universal algebra and in semi-abelian categories , 2007 .

[10]  A. Ursini On subtractive varieties, I , 1994 .

[11]  Peter T. Johnstone,et al.  Collapsed toposes and cartesian closed varieties , 1990 .

[13]  Dirk Hofmann,et al.  The monads of classical algebra are seldom weakly cartesian , 2014 .

[14]  Dirk Hofmann,et al.  On exponentiability of étale algebraic homomorphisms , 2013 .

[15]  W. Tholen,et al.  IDEAL DETERMINED CATEGORIES , 2010 .

[16]  A. Ursini,et al.  Symmetry of regular diamonds, the Goursat property, and subtractivity , 2012 .

[17]  Dominique Bourn,et al.  Subtractive Categories and Extended Subtractions , 2009, Appl. Categorical Struct..

[18]  Zurab Janelidze,et al.  Subtractive Categories , 2005, Appl. Categorical Struct..

[19]  James Richard Andrew Gray,et al.  Algebraic Exponentiation in General Categories , 2012, Appl. Categorical Struct..