Logarithmic-exponential series

Abstract We extend the field of Laurent series over the reals in a canonical way to an ordered differential field of “logarithmic-exponential series” (LE-series), which is equipped with a well behaved exponentiation. We show that the LE-series with derivative 0 are exactly the real constants, and we invert operators to show that each LE-series has a formal integral. We give evidence for the conjecture that the field of LE-series is a universal domain for ordered differential algebra in Hardy fields. We define composition of LE-series and establish its basic properties, including the existence of compositional inverses. Various interesting subfields of the field of LE-series are also considered.

[1]  G. Hardy Properties of Logarithmico‐Exponential Functions , 2022 .

[2]  A. Macintyre,et al.  The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .

[3]  Bernd I. Dahn,et al.  Notes on exponential-logarithmic terms , 1987 .

[4]  M. Eastham,et al.  Theory of ordinary differential equations , 1970 .

[5]  Paulo Ribenboim,et al.  Théorie des valuations , 1964 .

[6]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[7]  Angus Macintyre,et al.  Logarithmic‐Exponential Power Series , 1997 .

[8]  M. Rosenlicht Asymptotic Solutions of Y"=F(x)Y , 1995 .

[9]  Bernd I. Dahn The limit behaviour of exponential terms , 1984 .

[10]  M. Rosenlicht,et al.  The rank of a Hardy field , 1983 .

[11]  M. Rosenlicht,et al.  Growth properties of functions in Hardy fields , 1987 .

[12]  Jean Ecalle,et al.  Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac , 1992 .

[13]  Lou van den Dries Convergent Series Expansions of a New Type for Exponential Functions , 1989 .

[14]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[15]  J. Esterle,et al.  Solution d'un problème d'Erdős,Gillman etHenriksen et application a l'étude des homomorphismes de $$C$$ (K)(K) , 1977 .

[16]  Y. Ilyashenko,et al.  Finiteness Theorems for Limit Cycles , 1991 .

[17]  Salma Kuhlmann,et al.  Exponentiation in power series , 1996 .

[18]  Saharon Shelah,et al.  Counting Equivalence Classes For Co-κ-Souslin Equivalence Relations , 1982 .

[19]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[20]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[21]  Chris Miller,et al.  Levelled O-minimal structures , 1997 .

[22]  Jean-Pierre Ressayre,et al.  Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..