A new numerical approach for the simulation of the growth of inorganic nanoparticles
暂无分享,去创建一个
Markus Kraft | Clive G. Wells | W. Wagner | M. Kraft | Neal Morgan | Wolfgang Wagner | Neal Morgan | M. Goodson | Mike Goodson | C. Wells
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Markus Kraft,et al. An efficient stochastic algorithm for simulating Nano-particle dynamics , 2002 .
[3] Wolfgang Wagner,et al. An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena , 2000, SIAM J. Sci. Comput..
[4] Robert J. Kee,et al. PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .
[5] P. Roth,et al. Oxidation of Fe atoms by O2 based on Fe- and O-concentration measurements , 2002 .
[6] Michael Frenklach,et al. Aerosol dynamics modeling using the method of moments , 1987 .
[7] D. Steinberg,et al. Technometrics , 2008 .
[8] Daniel T. Gillespie,et al. The Stochastic Coalescence Model for Cloud Droplet Growth. , 1972 .
[9] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[10] Karl Sabelfeld,et al. Stochastic particle methods for Smoluchowski coagulation equation: variance reduction and error estimations , 2003, Monte Carlo Methods Appl..
[11] M. Smoluchowski,et al. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .
[12] Robert J. Kee,et al. A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .
[13] Babovsky Hans. On a Monte Carlo scheme for Smoluchowski’s coagulation equation , 1999 .
[14] Benjamin Jourdain,et al. A stochastic approach for the numerical simulation of the general dynamics equation for aerosols , 2003 .
[15] Sotiris E. Pratsinis,et al. Process simulation of gas-to-particle-synthesis via population balances: Investigation of three models , 2002 .
[16] M. Hounslow. A discretized population balance for continuous systems at steady state , 1990 .
[17] CoalescenceDavid J. Aldous. Stochastic Coalescence , 1998 .
[18] P. Roth,et al. Kinetics of the Fe-Atom Condensation Based on Fe−Concentration Measurements † , 2003 .
[19] W. Wagner,et al. Numerical study of a stochastic particle method for homogeneous gas-phase reactions , 2003 .
[20] Rosner,et al. Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring. , 1999, Journal of colloid and interface science.
[21] S. Pratsinis,et al. Kinetics of Titanium(IV) Chloride Oxidation , 1990 .
[22] Patrick T. Spicer,et al. Titania formation by TiCl4 gas phase oxidation, surface growth and coagulation , 2002 .
[23] Sotiris E. Pratsinis,et al. Monte Carlo simulation of particle coagulation and sintering , 1994 .
[24] Andreas Eibeck,et al. Stochastic Particle Approximations for Smoluchoski’s Coagualtion Equation , 2001 .
[25] Markus Kraft,et al. Two approaches to the simulation of silica particle synthesis , 2002 .
[26] M. Smoluchowski,et al. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .
[27] Markus Kraft,et al. Direct Simulation and Mass Flow Stochastic Algorithms to Solve a Sintering-Coagulation Equation , 2005, Monte Carlo Methods Appl..
[28] Andreas Eibeck,et al. Approximative solution of the coagulation–fragmentation equation by stochastic particle systems , 2000 .
[29] Robert J. Kee,et al. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .
[30] P. Roth,et al. Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames , 2001 .
[31] P. Roth,et al. Formation and Growth of Sio2 Particlesin Low Pressure H2/O2/Ar Flames Doped with Sih4 , 1997 .