A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times
暂无分享,去创建一个
Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditional model of Wardrop competition when uncertainty is present in the network. The focus is on strategic risk-averse users who capture the tradeoff between travel times and their variability in a mean-standard deviation (mean-stdev) objective, defined as the mean travel time plus a risk-aversion factor times the standard deviation of travel time along a path. We consider both infinitesimal users, leading to a non-atomic game, and atomic users, leading to a discrete finite game. We establish conditions that characterize an equilibrium traffic assignment and find when it exists. The main challenge is posed by the users’ risk aversion, since the mean-stdev objective is non-convex and non-separable, meaning that a path cannot be split as a sum of edge costs. As a result, even an individual user’s sub-problem — a stochastic shortest path problem — is a non-convex optimization problem for which no polynomial time algorithms are known. In turn, the mathematical structure of the traffic assignment model with stochastic travel times is fundamentally different from the deterministic counterpart. In particular, an equilibrium characterization requires exponentially many variables, one for each path in the network, since an edge-flow has multiple possible path-flow decompositions that are not equivalent. Because of this, characterizing the equilibrium and the socially-optimal assignment, which minimizes the total user cost, is more challenging than in the traditional deterministic setting. Nevertheless, we prove that both can be encoded by a representation with just polynomially-many paths. Finally, for the case of uncertainty parameters that are independent from edge loads, we show that although an equilibrium assignment results in a total user cost that is higher than that of the socially-optimal one, it is not higher than the analogous ratio in the deterministic setting. In other words, uncertainty does not further degrade the system performance in addition to strategic user behavior alone.