A retrieval challenge exercise for the Ariel mission

[1]  N. Skaf Characterising the Hot Jupiters WASP-127\,b, WASP-79\,b and WASP-62\,b with HST , 2020 .

[2]  Enzo Pascale,et al.  ArielRad: the Ariel radiometric model , 2020, Experimental Astronomy.

[3]  J. Tennyson,et al.  The ExoMolOP database: Cross sections and k-tables for molecules of interest in high-temperature exoplanet atmospheres , 2020, 2009.00687.

[4]  K. Chubb,et al.  The ARCiS framework for exoplanet atmospheres , 2020, 2006.12821.

[5]  Julien H. Girard,et al.  Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e , 2020, Astronomy & Astrophysics.

[6]  N. Lewis,et al.  Why Is it So Cold in Here? Explaining the Cold Temperatures Retrieved from Transmission Spectra of Exoplanet Atmospheres , 2020, The Astrophysical Journal.

[7]  J. Leconte,et al.  Strong biases in retrieved atmospheric composition caused by day–night chemical heterogeneities , 2020, Astronomy & Astrophysics.

[8]  E. Pascale,et al.  Alfnoor: A Retrieval Simulation of the Ariel Target List , 2020, The Astronomical Journal.

[9]  J. Barstow Unveiling cloudy exoplanets: the influence of cloud model choices on retrieval solutions , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  M. Line,et al.  A comparison of exoplanet spectroscopic retrieval tools , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  G. Tinetti,et al.  TauREx 3: A Fast, Dynamic, and Extendable Framework for Retrievals , 2019, 1912.07759.

[12]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b , 2019, Nature Astronomy.

[13]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[14]  M. Line,et al.  Exploring Exoplanet Cloud Assumptions in JWST Transmission Spectra , 2019, The Astrophysical Journal.

[15]  W. J. van der Zande,et al.  Update of the HITRAN collision-induced absorption section , 2019, Icarus.

[16]  K. Molaverdikhani,et al.  petitRADTRANS , 2019, Astronomy & Astrophysics.

[17]  Laura K. McKemmish,et al.  ExoMol molecular line lists – XXXIII. The spectrum of Titanium Oxide , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  J. Fortney,et al.  Climate of an ultra hot Jupiter , 2019, Astronomy & Astrophysics.

[19]  G. Tinetti,et al.  Toward a More Complex Description of Chemical Profiles in Exoplanet Retrievals: A Two-layer Parameterization , 2019, The Astrophysical Journal.

[20]  F. Selsis,et al.  Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day–night temperature gradients , 2019, Astronomy & Astrophysics.

[21]  H. Knutson,et al.  Forward Modeling and Retrievals with PLATON, a Fast Open-source Tool , 2018, Publications of the Astronomical Society of the Pacific.

[22]  M. Min,et al.  ARCiS framework for exoplanet atmospheres The cloud transport model , 2019 .

[23]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[24]  Enzo Pascale,et al.  UvA-DARE (Digital Academic Repository) A chemical survey of exoplanets with ARIEL , 2022 .

[25]  D. Catling,et al.  Detectability of Biosignatures in Anoxic Atmospheres with the James Webb Space Telescope: A TRAPPIST-1e Case Study , 2018, The Astronomical Journal.

[26]  Emilio Molinari,et al.  Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b , 2018, Nature.

[27]  J. Tennyson,et al.  ExoMol molecular line lists XXX: a complete high-accuracy line list for water , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  Giovanna Tinetti,et al.  The ARIEL Space Mission , 2018, 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[29]  Sergei N. Yurchenko,et al.  The ExoMol Atlas of Molecular Opacities , 2018, 1805.03711.

[30]  N. Madhusudhan,et al.  Retrieval of exoplanet emission spectra with HyDRA , 2017, 1710.06433.

[31]  Patricio Cubillos,et al.  An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations , 2017, 1710.02556.

[32]  J. Tennyson,et al.  A hybrid line list for CH4 and hot methane continuum. , 2017, Astronomy and astrophysics.

[33]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[34]  R. MacDonald,et al.  HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water , 2017, 1701.01113.

[35]  M. Bonnefoy,et al.  HELIOS–RETRIEVAL: An Open-source, Nested Sampling Atmospheric Retrieval Code; Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation , 2016, 1610.03216.

[36]  S. Aigrain,et al.  A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION , 2016, 1610.01841.

[37]  Nate B. Lust,et al.  ON CORRELATED-NOISE ANALYSES APPLIED TO EXOPLANET LIGHT CURVES , 2016, 1610.01336.

[38]  I. Gordon,et al.  HITRAN2016 : new and improved data and tools towards studies of planetary atmospheres , 2016 .

[39]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[40]  Björn Benneke,et al.  A map of the large day–night temperature gradient of a super-Earth exoplanet , 2016, Nature.

[41]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[42]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[43]  Michael R. Line,et al.  THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA , 2015, 1511.09443.

[44]  M. Griffin,et al.  The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) , 2015, Astronomical Telescopes + Instrumentation.

[45]  J. Harrington Atmospheric Retrievals from Exoplanet Observations and Simulations with BART , 2016 .

[46]  G. Tinetti,et al.   ?> -REx. II. RETRIEVAL OF EMISSION SPECTRA , 2015, 1508.07591.

[47]  H. C. Stempels,et al.  A major upgrade of the VALD database , 2015 .

[48]  B. Benneke,et al.  Strict Upper Limits on the Carbon-to-Oxygen Ratios of Eight Hot Jupiters from Self-Consistent Atmospheric Retrieval , 2015, 1504.07655.

[49]  Laurence S. Rothman,et al.  ROVIBRATIONAL LINE LISTS FOR NINE ISOTOPOLOGUES OF THE CO MOLECULE IN THE X1Σ+ GROUND ELECTRONIC STATE , 2015 .

[50]  Jonathan Tennyson,et al.  TAU-REX I: A NEXT GENERATION RETRIEVAL CODE FOR EXOPLANETARY ATMOSPHERES , 2014, 1409.2312.

[51]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[52]  I. Gordon,et al.  Status of the HITRAN and HITEMP databases , 2014 .

[53]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[54]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[55]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[56]  Roda Bounaceur,et al.  A chemical model for the atmosphere of hot Jupiters , 2012, 1208.0560.

[57]  Patrick G. J. Irwin,et al.  Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy , 2011, 1110.2934.

[58]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[59]  P. Drossart,et al.  Correlations between cloud thickness and sub‐cloud water abundance on Venus , 2010 .

[60]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[61]  G. Orton,et al.  Phosphine on Jupiter and Saturn from Cassini/CIRS , 2009 .

[62]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[63]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[64]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[65]  J. Hovenier,et al.  Modeling optical properties of cosmic dust grains using a distribution of hollow spheres , 2005, astro-ph/0503068.

[66]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[67]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[68]  U. Jørgensen,et al.  High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres , 2001 .

[69]  A. Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[70]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[71]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[72]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[73]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II - Overtone and hot bands , 1989 .

[74]  Lothar Frommhold,et al.  Collision-induced infrared spectra of H2-He pairs involving 0-1 vibrational transitions and temperatures from 18 to 7000 K , 1989 .

[75]  T. Ackerman,et al.  Algorithms for the calculation of scattering by stratified spheres. , 1981, Applied optics.

[76]  R. Kurucz Atlas: a Computer Program for Calculating Model Stellar Atmospheres , 1970 .