The high-foot implosion campaign on the National Ignition Facilitya)

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

Marilyn Schneider | Jay D. Salmonson | J. D. Moody | C. J. Cerjan | Frank E. Merrill | John L. Kline | David N. Fittinghoff | Paul T. Springer | Brian Spears | Rebecca Dylla-Spears | D. A. Callahan | Jose Milovich | Omar Hurricane | Steven W. Haan | Denise E. Hinkel | A. L. Kritcher | T. Döppner | A. G. MacPhee | Joseph Ralph | D. H. Edgell | J. A. Frenje | J. P. Knauer | Klaus Widmann | Hans W. Herrmann | P. Kervin | G. P. Grim | Peter M. Celliers | H. F. Robey | Pierre Michel | R. Tommasini | G. A. Kyrala | Daniel Casey | Bruce Remington | J. R. Rygg | L. F. Berzak Hopkins | B. J. Kozioziemski | T. R. Dittrich | P. K. Patel | Laura Robin Benedetti | J. A. Caggiano | Melissa Edwards | Charles B. Yeamans | Robert Hatarik | H.-S. Park | Nobuhiko Izumi | P. Michel | J. Moody | E. Dewald | A. MacPhee | R. Tommasini | D. Callahan | M. Edwards | D. Hinkel | J. Milovich | K. Widmann | J. Kline | G. Kyrala | J. Knauer | J. Frenje | B. Remington | C. Cerjan | B. Spears | O. Hurricane | T. Dittrich | S. Haan | D. Fittinghoff | H. Park | N. Izumi | P. Patel | H. Robey | D. Casey | D. Edgell | P. Celliers | P. Springer | J. Salmonson | J. Ralph | G. Grim | J. Caggiano | T. Döppner | R. Dylla‐Spears | M. G. Johnson | N. Guler | A. Kritcher | S. L. Pape | T. Ma | F. Merrill | A. Pak | L. Benedetti | B. Kozioziemski | S. Maclaren | H. Herrmann | Eduard Dewald | S. F. Khan | N. Guler | M. Gatu Johnson | Arthur Pak | R. Hatarik | C. Yeamans | L. B. Hopkins | Tammy Ma | J. S. Ross | S. Le Pape | M. A. Barrios Garcia | S. A. Maclaren | P. Kervin | M. A. Garcia | M. Schneider | S. Khan

[1]  L A Bernstein,et al.  Neutron activation diagnostics at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[2]  C R Danly,et al.  Neutron source reconstruction from pinhole imaging at National Ignition Facility. , 2014, The Review of scientific instruments.

[3]  M J Moran,et al.  Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[4]  E. Dewald,et al.  Design of a high-foot high-adiabat ICF capsule for the national ignition facility. , 2013, Physical review letters.

[5]  L. J. Atherton,et al.  Implosion dynamics measurements at the National Ignition Facility , 2012 .

[6]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[7]  O A Hurricane,et al.  Panel 3 Report: Implosion Hydrodynamics , 2012 .

[8]  Karen S. Anderson,et al.  Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement , 2010 .

[9]  Denis G. Colombant,et al.  High-gain direct-drive target design for laser fusion , 2000 .

[10]  Jose Milovich,et al.  Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya) , 2013 .

[11]  N. Izumi,et al.  Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. , 2013, Physical review letters.

[12]  K. G. Krauter,et al.  Shock Timing experiments on the National Ignition Facility , 2011 .

[13]  Gilbert W. Collins,et al.  Hot-spot mix in ignition-scale inertial confinement fusion targets. , 2013, Physical review letters.

[14]  Robert L. McCrory,et al.  Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion , 1998 .

[15]  R Tommasini,et al.  Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF. , 2012, The Review of scientific instruments.

[16]  Paul T. Springer,et al.  Integrated diagnostic analysis of inertial confinement fusion capsule performancea) , 2013 .

[17]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[18]  H B Radousky,et al.  Precision shock tuning on the national ignition facility. , 2012, Physical review letters.

[19]  P L Volegov,et al.  The neutron imaging diagnostic at NIF (invited). , 2012, The Review of scientific instruments.

[20]  L. J. Atherton,et al.  Progress Towards Ignition on the National Ignition Facility , 2013 .

[21]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[22]  David C. Eder,et al.  Development of Nuclear Diagnostics for the National Ignition Facility (invited) , 2006 .

[23]  P. Michel,et al.  Early-time symmetry tuning in the presence of cross-beam energy transfer in ICF experiments on the National Ignition Facility. , 2013, Physical review letters.

[24]  P. B. Radha,et al.  Improving cryogenic deuterium–tritium implosion performance on OMEGAa) , 2013 .

[25]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[26]  J. D. Kilkenny,et al.  First Hot Electron Measurements in Near-ignition Scale Hohlraums on the National Ignition Facility , 2010 .

[27]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[28]  L. J. Atherton,et al.  The velocity campaign for ignition on NIFa) , 2012 .

[29]  R. B. Ehrlich,et al.  Nuclear imaging of the fuel assembly in ignition experimentsa) , 2012 .

[30]  L. J. Atherton,et al.  Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma , 2012, Nature Physics.

[31]  C. Sorce,et al.  Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments , 2011 .

[32]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[33]  E I Moses,et al.  The National Ignition Facility and the National Ignition Campaign , 2010, IEEE Transactions on Plasma Science.

[34]  Garry Rodrigue,et al.  A study of ALE simulations of Rayleigh–Taylor instability☆ , 2001 .

[35]  P Bell,et al.  Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.

[36]  J. R. Rygg,et al.  Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya) , 2014 .

[37]  Stephen E. Bodner,et al.  Rayleigh-Taylor Instability and Laser-Pellet Fusion , 1974 .

[38]  O. N. Krokhin,et al.  ESCAPE OF α PARTICLES FROM A LASER-PULSE-INITIATED THERMONUCLEAR REACTION , 1973 .

[39]  S. Skupsky,et al.  Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket , 2003 .

[40]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[41]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[42]  O A Hurricane,et al.  High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility. , 2014, Physical review letters.

[43]  Edward I. Moses,et al.  Special Topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experimentsa) , 2011 .

[44]  E. T. Alger,et al.  Cryogenic thermonuclear fuel implosions on the National Ignition Facility , 2012 .

[45]  Jay D. Salmonson,et al.  Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign , 2011 .