Prelithiated silicon nanowires as an anode for lithium ion batteries.

Silicon is one of the most promising anode materials for the next-generation high-energy lithium ion battery (LIB), while sulfur and some other lithium-free materials have recently shown high promise as cathode materials. To make a full battery out of them, either the cathode or the anode needs to be prelithiated. Here, we present a method for prelithiating a silicon nanowire (SiNW) anode by a facile self-discharge mechanism. Through a time dependence study, we found that 20 min of prelithiation loads ∼50% of the full capacity into the SiNWs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies show that the nanostructure of SiNWs is maintained after prelithiation. We constructed a full battery using our prelithiated SiNW anode with a sulfur cathode. Our work provides a protocol for pairing lithium-free electrodes to make the next-generation high-energy LIB.

[1]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[2]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[3]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[4]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[5]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[6]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[7]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[8]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[9]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[10]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[11]  Anne C. Dillon,et al.  Layered vanadium and molybdenum oxides: batteries and electrochromics , 2009 .

[12]  Xinping Qiu,et al.  New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy , 2009 .

[13]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[14]  Lin Xu,et al.  Formation and Lithiation of Ferroselite Nanoflowers as High-energy Li-ion Battery Electrodes , 2009, International Journal of Electrochemical Science.

[15]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[16]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[17]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[18]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[19]  Z. Fu,et al.  Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries , 2007 .

[20]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[21]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[22]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[23]  M. Lain,et al.  A lithium ion cell containing a non-lithiated cathode , 2005 .

[24]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[25]  J. Shim,et al.  The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance , 2002 .

[26]  J. Dahn,et al.  Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites , 2002 .

[27]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .