Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH4ClO4

[1]  T. Brill,et al.  T-Jump/FT-IR Spectroscopy: A New Entry into the Rapid, Isothermal Pyrolysis Chemistry of Solids and Liquids , 1992 .

[2]  T. Brill Connecting the chemical composition of a material to its combustion characteristics , 1992 .

[3]  Thomas B. Brill,et al.  Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions , 1991 .

[4]  T. Brill,et al.  Thermal decomposition of energetic materials 54. Kinetics and near-surface products of azide polymers AMMO, BAMO, and GAP in simulated combustion , 1991 .

[5]  T. Brill,et al.  Thermal decomposition of energetic materials 50. Kinetics and mechanism of nitrate ester polymers at high heating rates by SMATCH/FTIR spectroscopy , 1991 .

[6]  T. Brill,et al.  Thermal Decomposition of Energetic Materials 37. SMATCH/FT-IR (Simultaneous MAss and Temperature CHange/FT-IR) Spectroscopy , 1990 .

[7]  S. Sakamoto,et al.  Combustion wave structure of AP composite propellants , 1987 .

[8]  O. Korobeinichev,et al.  Kinetic calculations and mechanism definition for reactions in an ammonium perchlorate flame , 1982 .

[9]  W. Person,et al.  Measurement of the absolute infrared intensity of the fundamental vibration of HCl in low temperature matrices , 1982 .

[10]  H. Hesser,et al.  Detection of species resulting from condensed phase decomposition of ammonium perchlorate , 1972 .

[11]  V. M. Mal'tsev,et al.  An optical method of measuring the burning-surface temperature of condensed systems , 1969 .