暂无分享,去创建一个
Jean-Guillaume Dumas | Clément Pernet | Thierry Gautier | Pascal Giorgi | T. Gautier | J. Dumas | Clément Pernet | Pascal Giorgi
[1] Jean-Guillaume Dumas,et al. Efficient polynomial time algorithms computing industrial-strength primitive roots , 2004, Inf. Process. Lett..
[2] Jean-Guillaume Dumas,et al. Finite field linear algebra subroutines , 2002, ISSAC '02.
[3] Jack J. Dongarra,et al. Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..
[4] Hans Zassenhaus,et al. A remark on the Hensel factorization method , 1978 .
[5] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[6] Erich Kaltofen,et al. LINBOX: A GENERIC LIBRARY FOR EXACT LINEAR ALGEBRA , 2002 .
[7] J. R. Johnson,et al. Implementation of Strassen's Algorithm for Matrix Multiplication , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.
[8] P. L. Montgomery. Modular multiplication without trial division , 1985 .
[9] David Defour,et al. Fonctions élémentaires : algorithmes et implémentations efficaces pour l'arrondi correct en double précision. (Elementary functions : algorithms and efficient implementation for correct rounding for the double precision) , 2003 .
[10] Jean-Guillaume Dumas,et al. Adaptive Triangular System Solving , 2006, Challenges in Symbolic Computation Software.
[11] Jean-Guillaume Dumas,et al. On parallel block algorithms for exact triangularizations , 2002, Parallel Comput..
[12] Oscar H. Ibarra,et al. A Generalization of the Fast LUP Matrix Decomposition Algorithm and Applications , 1982, J. Algorithms.
[13] Jean-Guillaume Dumas,et al. Adaptive and Hybrid Algorithms: classification and illustration on triangular system solving ∗ , 2006 .
[14] Jean-Guillaume Dumas,et al. Efficient computation of the characteristic polynomial , 2005, ISSAC.
[15] B. David Saunders. Black box methods for least squares problems , 2001, ISSAC '01.
[16] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[17] G. Mullen,et al. Primitive polynomials over finite fields , 1992 .
[18] Jean-Guillaume Dumas,et al. Algorithmes parallèles efficaces pour le calcul formel : algèbre linéaire creuse et extensions algébriques. (Efficient parallel algorithm for computer algebra : sparce linear algebra and algebraic extensions) , 2000 .
[19] Jean-Guillaume Dumas,et al. FFPACK: finite field linear algebra package , 2004, ISSAC '04.
[20] Jean-Guillaume Dumas,et al. On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..
[21] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[22] Pierre Courrieu,et al. Fast Computation of Moore-Penrose Inverse Matrices , 2008, ArXiv.
[23] Nicholas J. Higham,et al. Exploiting fast matrix multiplication within the level 3 BLAS , 1990, TOMS.
[24] Andrew M. Odlyzko,et al. Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..
[25] Victor Y. Pan,et al. Fast rectangular matrix multiplications and improving parallel matrix computations , 1997, PASCO '97.
[26] Josef Schicho. Proceedings of the 2004 international symposium on Symbolic and algebraic computation , 2004, ISSAC 2004.
[27] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[28] J. Hopcroft,et al. Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .
[29] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[30] Yasuhiro KAWAME Hirokazu. MBLAS : Modular Basic Linear Algebra Subprograms , Design and Speedup Techniques , 2004 .
[31] Jean-Guillaume Dumas,et al. Q-adic transform revisited , 2007, ISSAC '08.
[32] Gene H. Golub,et al. Matrix computations , 1983 .
[33] Julian D. Laderman,et al. On practical algorithms for accelerated matrix multiplication , 1992 .
[34] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[35] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.
[36] Ben Noble. A Method for Computing the Generalized Inverse of a Matrix , 1966 .
[37] Klaus Huber. Solving equations in finite fields and some results concerning the structure of GF(pm) , 1992, IEEE Trans. Inf. Theory.
[38] Michael A. Heroux,et al. GEMMW: A Portable Level 3 BLAS Winograd Variant of Strassen's Matrix-Matrix Multiply Algorithm , 1994, Journal of Computational Physics.
[39] Arne Storjohann,et al. The shifted number system for fast linear algebra on integer matrices , 2005, J. Complex..
[40] Yuefan Deng,et al. New trends in high performance computing , 2001, Parallel Computing.
[41] Victor Eijkhout,et al. Self-Adapting Numerical Software and Automatic Tuning of Heuristics , 2003, International Conference on Computational Science.
[42] Isak Jonsson,et al. Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra Algorithms , 1998, PARA.
[43] V. Strassen. Gaussian elimination is not optimal , 1969 .
[44] Erich Kaltofen,et al. Parallel algorithms for matrix normal forms , 1990 .
[45] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[46] V. Pan,et al. Polynomial and matrix computations (vol. 1): fundamental algorithms , 1994 .
[47] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[48] Klaus Huber. Some comments on Zech's logarithms , 1990, IEEE Trans. Inf. Theory.
[49] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[50] Numerische Mathematik. Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .
[51] Igor E. Kaporin,et al. The aggregation and cancellation techniques as a practical tool for faster matrix multiplication , 2004, Theor. Comput. Sci..