Optomechanical quantum control of a nitrogen vacancy center in diamond

We demonstrate optomechanical quantum control of a nitrogen vacancy (NV) in the resolved-sideband regime by coupling the NV to both optical fields and surface acoustic waves and by using strong excited-state electron-phonon coupling for NVs.

[1]  Laser cooling of a nanomechanical resonator mode to its quantum ground state. , 2003, Physical review letters.

[2]  P. Maletinsky,et al.  Strong mechanical driving of a single electron spin , 2015, Nature Physics.

[3]  Patrik Rath,et al.  Diamond as a material for monolithically integrated optical and optomechanical devices , 2015 .

[4]  P. Zoller,et al.  Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. , 2013, Physical review letters.

[5]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[6]  M. D. Lukin,et al.  Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit , 2011, Nature.

[7]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[8]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[9]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[10]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[11]  Satoshi Fujii,et al.  Diamond-based surface acoustic wave devices , 2003 .

[12]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[13]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[14]  M. Plenio,et al.  Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons , 2013, 1304.2192.

[15]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[16]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[17]  David Morgan,et al.  Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing , 2007 .

[18]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[19]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[20]  R. Ruskov,et al.  Sound-based analogue of cavity quantum electrodynamics in silicon. , 2011, Physical review letters.

[21]  S. Bennett,et al.  Phonon cooling and lasing with nitrogen-vacancy centers in diamond , 2013, 1306.5915.

[22]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[23]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[24]  J. Cirac,et al.  Universal Quantum Transducers Based on Surface Acoustic Waves , 2015 .

[25]  Paul E. Barclay,et al.  Single crystal diamond nanobeam waveguide optomechanics , 2015, 1502.01788.

[26]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[27]  G. Fuchs,et al.  Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator , 2015, 1510.01194.

[28]  D. Wineland Superposition, Entanglement, and Raising Schroedinger′s Cat (Nobel Lecture) , 2013 .

[29]  S. Seidelin,et al.  A single NV defect coupled to a nanomechanical oscillator , 2011, 1112.1291.

[30]  D. Golter,et al.  Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. , 2014, Physical review letters.

[31]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[32]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[33]  A Auffèves,et al.  Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. , 2013, Nature nanotechnology.

[34]  Hideaki Nakahata,et al.  High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure , 1994 .

[35]  P. Hakonen,et al.  Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.

[36]  M. Metcalfe Applications of cavity optomechanics , 2014 .

[37]  Bob B. Buckley,et al.  All-optical control of a solid-state spin using coherent dark states , 2013, Proceedings of the National Academy of Sciences.

[38]  S. Bhave,et al.  Coherent Control of a Nitrogen-Vacancy Center Spin Ensemble with a Diamond Mechanical Resonator , 2014, 1411.5325.

[39]  Hailin Wang,et al.  Protecting a solid-state spin from decoherence using dressed spin states. , 2014, Physical review letters.

[40]  N. Fujimori,et al.  Theoretical study on SAW characteristics of layered structures including a diamond layer , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[42]  M. Lukin,et al.  Free-standing mechanical and photonic nanostructures in single-crystal diamond. , 2012, Nano letters.

[43]  G. Solomon,et al.  Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. , 2010, Physical review letters.