The Application of Multi -Disciplinary Optimization Technologies to the Design of a Business Jet

This paper contains an outline of an engineering approach to multi -disci plinary design optimization and an application of it to a business jet. One of the most challenging issues in multi -disciplinary optimization is to bring together technologies and methodologies of various disciplines in a way that is both practical and inc lusive of the expertise that must accompany these individual technologies. The approach taken by the Advanced Aerodynamics Department at Bombardier Aerospace is to build each component of the methodology in a stepwise fashion from the ground up and integra te the engineering analysis and design tools already in place at Bombardier. The methodology is based on the integration of low and high fidelity computational fluid dynamics codes into the multi disciplinary environment, the development of conceptual wing structural design codes, wing weight estimation codes, En Route fuel burn prediction models and codes for the prediction of wing static aeroelastic deformation under load. Once a multi -disciplinary optimum design is obtained using low fidelity codes, this preliminary design undergoes a second refinement stage of optimization using high fidelity codes.

[1]  David Saunders,et al.  Optimization of a transonic business jet wing , 1995 .

[2]  Amadou Ndiaye,et al.  Database requirements for an MDO software framework , 2000 .

[3]  J. R. Banerjee,et al.  Sequential use of conceptual MDO and panel sizing methods for aircraft wing design , 1999, The Aeronautical Journal (1968).

[4]  Gary L. Giles,et al.  Equivalent plate analysis of aircraft wing box structures with general planform geometry , 1986 .

[5]  Fred W. Williams,et al.  Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates , 1992 .

[6]  Sergio Iglesias,et al.  Optimum Spanloads Incorporating Wing Structural Weight , 2001 .

[7]  Alan Morris,et al.  Combined MDO optimisation including drag, mass and manufacturing information , 1998 .

[8]  Askin T. Isikveren,et al.  Parametric Modeling Techniques in Industrial Conceptual Transport Aircraft Design , 2003 .

[9]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[10]  Joel M. Grasmeyer,et al.  Multidisciplinary Design Optimization of a Strut-Braced Wing Aircraft , 1998 .

[11]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[12]  D. Kwak,et al.  Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations , 2003 .

[13]  W. Jefferson Stroud,et al.  General Panel Sizing Computer Code and Its Application to Composite Structural Panels , 1979 .

[14]  G. Miller An active flexible wing multi-disciplinary design optimization method , 1994 .

[15]  Antony Jameson,et al.  Aerodynamic Shape Optimization of Complete Aircraft Configurations using Unstructured Grids , 2004 .

[16]  D. Bushnell,et al.  Minimum-weight design of a stiffened panel via panda2 and evaluation of the optimized panel via stags , 1994 .

[17]  Neal Pfeiffer,et al.  Business jet wing design using aerodynamic shape optimization , 1996 .

[18]  Ilan Kroo,et al.  Concurrent wing design and flight-path optimization using optimizer-based decomposition , 1998 .

[19]  Bin Chen,et al.  An Object-Oriented Application Framework for Distributed Engineering Analysis and Optimization , 2003 .

[20]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[21]  David Kokan,et al.  Application of MD0 to Large Subsonic Transport Aircraft , 2000 .

[22]  T. McGeer Wing design for minimum drag with practical constraints , 1984 .

[23]  Ilan Kroo,et al.  Collaborative Optimization: Status and Directions , 2000 .

[24]  Keith Wilkinson,et al.  Practical Design of Minimum-Weight Aircraft Structures for Strength and Flutter Requirements , 1974 .

[25]  Sangho Kim,et al.  AERODYNAMIC SHAPE OPTIMIZATION : EXPLORING THE LIMITS OF DESIGN , 2003 .

[26]  D. J. Farrar,et al.  The Design of Compression Structures for Minimum Weight , 1949, Journal of the Royal Aeronautical Society.

[27]  Ilan Kroo,et al.  Subsonic wing planform design using multidisciplinary optimization , 1995 .

[28]  Eric Meyer,et al.  New aircraft lower wing skin trade study , 1995 .

[29]  David W. Zingg,et al.  Comparison of Optimization Algorithms Applied to Aerodynamic Design , 2004 .

[30]  R. T. Jones,et al.  Effect of Winglets on the Induced Drag of Ideal Wing Shapes , .

[31]  Vicki S. Johnson,et al.  Minimizing life cycle cost for subsonic commercial aircraft , 1990 .

[32]  Robert Thomas Jones,et al.  The Spanwise Distribution of Lift for Minimum Induced Drag of Wings Having a Given Lift and a Given Bending Moment , 1950 .

[33]  H. Ashley,et al.  On making things the best - Aeronautical uses of optimization /Wright Bros. lecture/ , 1981 .

[34]  Fassi Kafyeke,et al.  Challenges of Aircraft Design Integration , 2003 .

[35]  J. R. Banerjee,et al.  Aeroelastic optimisation of composite wings using the dynamic stiffness method , 1997, The Aeronautical Journal (1968).

[36]  Ludwig Prandtl,et al.  Applications of Modern Hydrodynamics to Aeronautics , 1923 .

[37]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[38]  Askin T. Isikveren,et al.  Identifying Economically Optimal Flight Techniques of Transport Aircraft , 2002 .

[39]  Richard J. Balling,et al.  Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems , 1997 .

[40]  Sean Wakayama,et al.  A simple cost related objective function for MDO of transport aircraft , 1997 .

[41]  John W. Gallman,et al.  Optimization of an Advanced Business Jet , 1997 .

[42]  W. Graham Elliott,et al.  Aircraft Loads Methodology for MDO , 2001 .

[43]  Holt Ashley,et al.  On Making Things the Best-Aeronautical Uses of Optimization , 1982 .

[44]  Garret N. Vanderplaats,et al.  ADS-1 - A new general-purpose optimization program , 1983 .

[45]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[46]  Steve Allwright Technical data management for collaborative multi-discipline optimisation , 1996 .

[47]  M. Anderson,et al.  A general panel sizing computer code and its application to composite structural panels , 1978 .

[48]  R Kelm,et al.  2407. Aeroelastic Effects on the Weight of an Aircraft in the Pre-Design Phase , 1997 .

[49]  O. Brodersen,et al.  Drag Prediction of Engine -Airframe Interference Effects Using Unstructured Navier -Stokes Calculations , 2001 .

[50]  Michael A Dornheim DASSAULT'S FALCON 2000: NEW BIG CABIN TWINJET. , 1993 .

[51]  Ramana V. Grandhi,et al.  Integrated design of aerodynamics and structures , 1989 .

[52]  Richard Butler,et al.  Optimum design of composite stiffened wing panels — a parametric study , 1995, The Aeronautical Journal (1968).

[53]  Anthony Craig,et al.  Spanload optimization for strength designed lifting surfaces , 1988 .

[54]  Vipperla B. Venkayya,et al.  ASOP-3: A Program for Optimum Structural Design to Satisfy Strength and Deflection Constraints , 1978 .

[55]  Fassi Kafyeke,et al.  The Development of A Multi-Disciplinary Wing Design Method , 2003 .

[56]  Paul Kuhn,et al.  A Summary of Diagonal Tension Part I : Methods of Analysis , 1952 .

[57]  G. N. Vanderplaats,et al.  ADS-1 - A new general-purpose optimization program. [automated design synthesis] , 1984 .

[58]  F. Kafyeke,et al.  Application of KTRAN Transonic Small Disturbance Code to the Challenger Business Jet Configuration with Winglets , 1988 .

[59]  Ilan Kroo,et al.  A General Approach to Multiple Lifting Surface Design and Analysis , 1984 .

[60]  Lockheed Martin,et al.  A Methodology of Large Scale Computational Aeroelasticity for the MDA/MDO Environment , 2000 .

[61]  F. Grund Pironneau, O., Optimal Shape Design for Elliptic Systems. Berlin‐Heidelberg‐New York‐Tokyo, Springer‐Verlag 1984. XII, 168 S., DM 80,—. US $ 29.90. ISBN 3‐540‐12069‐6 (Springer Series in Computational Physics) , 1985 .

[62]  Ilan Kroo,et al.  Collaborative optimization using response surface estimation , 1998 .

[63]  Marian Nemec,et al.  Optimization of High-Lift Configurations Using a Newton-Krylov Algorithm , 2003 .