Duality in Linear Programming Problems Related to Deterministic Long Run Average Problems of Optimal Control

It has been established recently that, under mild conditions, deterministic long run average problems of optimal control are “asymptotically equivalent” to infinite-dimensional linear programming problems (LPPs) and that these LPPs can be approximated by finite-dimensional LPPs. In this paper we introduce the corresponding infinite- and finite-dimensional dual problems and study duality relationships. We also investigate the possibility of using solutions of finite-dimensional LPPs and their duals for numerical construction of the optimal controls in periodic optimization problems. The construction is illustrated with a numerical example.

[1]  Daizhan Cheng,et al.  Optimal impulsive control in periodic ecosystem , 2006, Syst. Control. Lett..

[2]  J. Rubio Control and Optimization: The Linear Treatment of Nonlinear Problems , 1986 .

[3]  Z. Artstein Anoccupational measure solution to a singularly perturbed optimal control problem , 2002 .

[4]  R. Stockbridge Time-Average Control of Martingale Problems: A Linear Programming Formulation , 1990 .

[5]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[6]  S. M. Verduyn Lunel,et al.  Optimization of cyclically operated reactors and separators , 2003 .

[7]  R. Stockbridge,et al.  Numerical Comparison of Controls and Verification of Optimality for Stochastic Control Problems , 2000 .

[8]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[9]  V. Gaitsgory Suboptimization of singularly perturbed control systems , 1992 .

[10]  Asen L. Dontchev,et al.  Singular Perturbations in Infinite-Dimensional Control Systems , 2003, SIAM J. Control. Optim..

[11]  Adam M. Oberman,et al.  Computing the Effective Hamiltonian using a Variational Approach , 2005, CDC/ECC.

[12]  Zvi Artstein,et al.  Invariant Measures of Differential Inclusions Applied to Singular Perturbations , 1999 .

[13]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[14]  H. Ishii,et al.  Approximate solutions of the bellman equation of deterministic control theory , 1984 .

[15]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[16]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[17]  Pierre E. Dupont,et al.  CONSTRAINED OPTIMAL CONTROL OF VIBRATION DAMPERS , 1998 .

[19]  Vladimir Gaitsgory,et al.  Multiscale Singularly Perturbed Control Systems: Limit Occupational Measures Sets and Averaging , 2002, SIAM J. Control. Optim..

[20]  J. Aubin Set-valued analysis , 1990 .

[21]  O. Hernández-Lerma,et al.  Markov chains and invariant probabilities , 2003 .

[22]  Jason L. Speyer Periodic optimal flight , 1995 .

[23]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[24]  L. Grüne On the Relation between Discounted and Average Optimal Value Functions , 1998 .

[25]  V. Veliov A generalization of the Tikhonov theorem for singularly perturbed differential inclusions , 1997 .

[26]  T. Kurtz,et al.  Existence of Markov Controls and Characterization of Optimal Markov Controls , 1998 .

[27]  Fritz Colonius Optimal Periodic Control , 1988 .

[28]  Qing Zhang,et al.  Continuous-Time Markov Chains and Applications , 1998 .

[29]  G. Grammel Averaging of singularly perturbed systems , 1997 .

[30]  Gopal K. Basak,et al.  Ergodic control of degenerate diffusions , 1997 .

[31]  Helmut Maurer,et al.  Solution techniques for periodic control problems : A case study in production planning , 1998 .

[32]  V. Gaitsgory,et al.  Occupational Measures Formulation and Linear Programming Solution of Deterministic Long Run Average Problems of Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[33]  R. Vinter Convex duality and nonlinear optimal control , 1993 .

[34]  A. Leizarowitz,et al.  Limit Occupational Measures Set for a Control System and Averaging of Singularly Perturbed Control Systems , 1999 .

[35]  R. Stockbridge,et al.  Approximation of Infinite-Dimensional Linear Programming Problems which Arise in Stochastic Control , 1998 .

[36]  José G. Llavona,et al.  Approximation of Continuously Differentiable Functions , 1986 .

[37]  A. Haurie Optimal control on an infinite time horizon: The turnpike approach , 1976 .

[38]  Z. Artstein INVARIANT MEASURES AND THEIR PROJECTIONS IN NONAUTONOMOUS DYNAMICAL SYSTEMS , 2004 .

[39]  G. Yin,et al.  Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach , 1997 .

[40]  Hitoshi Ishii,et al.  A Characterization of the Existence of Solutions for Hamilton—Jacobi Equations in Ergodic Control Problems with Applications , 2000 .

[41]  Gautam Appa,et al.  Linear Programming in Infinite-Dimensional Spaces , 1989 .

[42]  Wolfgang Kliemann,et al.  Infinite time optimal control and periodicity , 1989 .

[43]  C. SIAMJ. LINEAR PROGRAMMING APPROACH TO DETERMINISTIC LONG RUN AVERAGE PROBLEMS OF OPTIMAL CONTROL , 2006 .

[44]  V. Borkar,et al.  Occupation measures for controlled Markov processes: characterization and optimality , 1996 .

[45]  Diogo A. Gomes,et al.  Linear programming interpretations of Mather's variational principle , 2002 .

[46]  B. Craven Control and optimization , 2019, Mathematical Modelling of the Human Cardiovascular System.

[47]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[48]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[49]  Brian D. O. Anderson,et al.  Optimal control problems over large time intervals , 1987, Autom..

[50]  R. Stockbridge Time-Average Control of Martingale Problems: Existence of a Stationary Solution , 1990 .

[51]  H. Kushner Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems , 1990 .

[52]  Vivek S. Borkar,et al.  Averaging of Singularly Perturbed Controlled Stochastic Differential Equations , 2007 .

[53]  Vladimir Gaitsgory,et al.  On a Representation of the Limit Occupational Measures Set of a Control System with Applications to Singularly Perturbed Control Systems , 2004, SIAM J. Control. Optim..

[54]  J. Warga Optimal control of differential and functional equations , 1972 .

[55]  Béla Lipták Control and Optimization of Unit Operations , 2005 .

[56]  G. Grammel On Nonlinear Control Systems with Multiple Time Scales , 2004 .

[57]  M. Quincampoix,et al.  Averaging method for discontinuous Mayer's problem of singularly perturbed control systems , 2003 .