Kinetics of thermally induced swelling of hydrogels

Abstract We present a continuum model for thermally induced volume transitions in stimulus–responsive hydrogels (SRHs). The framework views the transition as proceeding via the motion of a sharp interface separating swollen and collapsed phases of the underlying polymer network. In addition to bulk and interfacial force and energy balances, our model imposes an interfacial normal configurational force balance. To account for the large volume changes exhibited by SRHs during actuation, the governing equations are developed in the setting of finite-strain kinematics. The numerical approximations to the coupled thermomechanical equations are obtained with an extended finite element/level-set method. The solution strategy involves a non-standard operator split and a simplified version of the level-set update. A number of representative problems are considered to investigate the model and compare its predictions to experimental observations. In particular, we consider the thermally induced swelling of spherical and cylindrical specimens. The stability of the interface evolution is also examined.

[1]  D. Stewart,et al.  Spinning instability of gaseous detonations , 2001, Journal of Fluid Mechanics.

[2]  Elastic waves in cylindrical waveguides of arbitrary cross section , 2001 .

[3]  P. Chadwick,et al.  Modified entropic elasticity of rubberlike materials , 1984 .

[4]  K. Hsia,et al.  Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading , 2003 .

[5]  N. Sottos,et al.  Microcapsule induced toughening in a self-healing polymer composite , 2004 .

[6]  D. N. Riahi On nonlinear convection in mushy layers. Part 2. Mixed oscillatory and stationary modes of convection , 2004, Journal of Fluid Mechanics.

[7]  E. Fried,et al.  Prediction of disclinations in nematic elastomers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. D. Eshelby Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics , 1999 .

[9]  J. Dolbow,et al.  Point Defects in Nematic Gels: The Case for Hedgehogs , 2005 .

[10]  M. Peach,et al.  THE FORCES EXERTED ON DISLOCATIONS AND THE STRESS FIELDS PRODUCED BY THEM , 1950 .

[11]  M. Shibayama,et al.  Dynamic Light Scattering Study of Poly(N-isopropylacrylamide-co-acrylic acid) Gels , 1996 .

[12]  K. Hsia,et al.  In Situ X-Ray Diffraction Study of Electric-Field-Induced Domain Switching and Phase Transition in PZT-5H , 2004 .

[13]  D. Scott Stewart,et al.  Theory of Detonation with an Embedded Sonic Locus , 2005, SIAM J. Appl. Math..

[14]  J. Dolbow,et al.  A note on enrichment functions for modelling crack nucleation , 2003 .

[15]  Measurement of instantaneous Eulerian acceleration fields by particle-image accelerometry : Method and accuracy , 2001 .

[16]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[17]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[18]  D. Tortorelli,et al.  On Internal Constraints in Continuum Mechanics , 2002 .

[19]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[20]  G. Gioia,et al.  Structure and kinematics in dense free-surface granular flow. , 2003, Physical review letters.

[21]  M. Gurtin,et al.  A unified treatment of evolving interfaces accounting for small deformations and atomic transport: grain-boundaries, phase transitions, epitaxy , 2003 .

[22]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003 .

[23]  Ronald Adrian Information and the Study of Turbulence and Complex Flow , 2002 .

[24]  Morton E. Gurtin,et al.  A Unified Treatment of Evolving Interfaces Accounting for Small Deformations and Atomic Transport with Emphasis on Grain-Boundaries and Epitaxy , 2004 .

[25]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[26]  Morton E. Gurtin,et al.  Sharp-Interface Nematic–Isotropic Phase Transitions without Flow , 2004 .

[27]  Flow Instabilities in a Horizontal Dendrite Layer Rotating about an Inclined Axis , 2005 .

[28]  Graham F. Carey,et al.  Approximate boundary-flux calculations☆ , 1985 .

[29]  S. Balachandar,et al.  Wall-induced forces on a rigid sphere at finite Reynolds number , 2005, Journal of Fluid Mechanics.

[30]  D. Carlson,et al.  The totality of soft-states in a neo-classical nematic elastomer , 2002 .

[31]  S. Balachandar,et al.  Spanwise growth of vortex structure in wall turbulence , 2001 .

[32]  I. M. Robertson,et al.  Atomistic scale experimental observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behavior of metals , 2001 .

[33]  Michael R. Kessler,et al.  Cure kinetics of the ring‐opening metathesis polymerization of dicyclopentadiene , 2002 .

[34]  N. Sottos,et al.  Fracture testing of a self-healing polymer composite , 2002 .

[35]  S. Balachandar,et al.  Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I - Mean flow, circular jet and tip vortex scaling , 2005 .

[36]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[37]  Daniel A. Tortorelli,et al.  Geometrically-based Consequences of Internal Constraints , 2003 .

[38]  C. Atkinson,et al.  The flow of energy into the tip of a moving crack , 1968 .

[39]  P. Chadwick,et al.  Thermo-mechanics of rubberlike materials , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[41]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[42]  Daniel N. Riahi On Stationary and Oscillatory Modes of Flow Instability in a Rotating Porous Layer during Alloy Solidification , 2003 .

[43]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[44]  S. Balachandar,et al.  Response of the wake of an isolated particle to an isotropic turbulent flow , 2004, Journal of Fluid Mechanics.

[45]  Krishna Garikipati,et al.  Recent advantages in models for thermal oxidation of silicon , 2001 .

[46]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[47]  D. N. Riahi On nonlinear convection in mushy layers Part 1. Oscillatory modes of convection , 2002, Journal of Fluid Mechanics.

[48]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[49]  J. Dolbow,et al.  Chemically induced swelling of hydrogels , 2004 .

[50]  Z. C. Liu,et al.  Observation of vortex packets in direct numerical simulation of fully turbulent channel flow , 2002 .

[51]  T. Baker,et al.  Brittle fracture in polycrystalline microstructures with the extended finite element method , 2003 .

[52]  D. Stewart,et al.  Theory of direct initiation of gaseous detonations and comparison with experiment , 2004 .

[53]  E. Fried,et al.  Disclinated states in nematic elastomers , 2002 .

[54]  E. Fried The configurational and standard force balances are not always statements of a single law , 2003 .

[55]  Sulin Zhang,et al.  Bond coat surface rumpling in thermal barrier coatings , 2003 .

[56]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[57]  Toyoichi Tanaka,et al.  Kinetics of discontinuous volume-phase transition of gels , 1988 .

[58]  K. Hsia,et al.  Experimental investigation of the bond-coat rumpling instability under isothermal and cyclic thermal histories in thermal barrier systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[60]  D. Cahill,et al.  Evolution of surface waviness in thin films via volume and surface diffusion , 2005 .

[61]  S. Balachandar,et al.  Effect of turbulence on the drag and lift of a particle , 2003 .

[62]  Krishna Garikipati,et al.  Advances in the numerical treatment of grain-boundary migration: Coupling with mass transport and mechanics☆ , 2006 .

[63]  D. Scott Stewart,et al.  On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame , 2004 .

[64]  Krishna Garikipati,et al.  Recent Advances in Models for Thermal Oxidation of Silicon. , 2002 .

[65]  J. Dolbow,et al.  A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels , 2005 .

[66]  R. Adrian,et al.  The velocity and acceleration signatures of small-scale vortices in turbulent channel flow , 2002 .

[67]  Morton E. Gurtin,et al.  Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.

[68]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[69]  Nancy R. Sottos,et al.  Fatigue crack propagation in microcapsule-toughened epoxy , 2006 .

[70]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .

[71]  D. N. Riahi,et al.  On similarity waves in compacting media , 2003 .

[72]  K. Rajagopal,et al.  On internal constraints in continuum mechanics , 2006 .

[73]  Toyoichi Tanaka,et al.  Volume phase transition in a non‐ionic gel , 1984 .

[74]  H. Aref A transformation of the point vortex equations , 2001 .

[75]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[76]  M. Gurtin,et al.  The continuum mechanics of coherent two-phase elastic solids with mass transport , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[77]  P. Sofronis,et al.  Calculation of a constitutive potential for isostatic powder compaction , 2002 .

[78]  E. Fried,et al.  Biaxial disclinated states in nematic elastomers , 2003 .

[79]  David L. Chopp,et al.  A hybrid extended finite element/level set method for modeling phase transformations , 2002 .

[80]  D. N. Riahi Effect of permeability on steady flow in a dendrite layer , 2006 .

[81]  D. N. Riahi On flow of binary alloys during crystal growth , 2003 .

[82]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[83]  M. Gurtin,et al.  A void-based description of compaction and segregation in flowing granular materials , 2004 .

[84]  Towards the miniaturization of explosive technology , 2002 .

[85]  Asymptotic theory of evolution and failure of self-sustained detonations , 2005, Journal of Fluid Mechanics.

[86]  Two-phase densification of cohesive granular aggregates. , 2001, Physical review letters.

[87]  E. Fried,et al.  Striping of nematic elastomers , 2002 .

[88]  T. Belytschko,et al.  Modeling Holes and Inclusions by Level Sets in theExtended Finite Element , 2000 .

[89]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[90]  Ronald Adrian,et al.  Measurement of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy , 2002 .

[91]  S. Balachandar Response to Comments on “Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I—Mean flow, circular jet and tip vortex scaling” by H. S. Yoon, D. F. Hill, S. Balachandar, R. J. Adrian and M. Y. Ha , 2006 .

[92]  D. N. Riahi Nonlinear steady convection in rotating mushy layers , 2003, Journal of Fluid Mechanics.

[93]  F. Bombardelli,et al.  Scaling and similarity in rough channel flows. , 2001, Physical review letters.

[94]  Toyoichi Tanaka,et al.  Volume phase transition in a nonionic gel , 1984 .

[95]  D. Scott Stewart,et al.  Multi-scale modeling of solid rocket motors: Time integration methods from computational aerodynamics applied to stable quasi-steady motor burning , 2005 .

[96]  R. Adrian,et al.  Reynolds number scaling of flow in a stirred tank with Rushton turbine. Part II — Eigen decomposition of fluctuation , 2005 .

[97]  E. Fried,et al.  Normal-stress differences and the detection of disclinations in nematic elastomers , 2002 .

[98]  Sulin Zhang,et al.  Influence of surface morphology on the adhesion strength of epoxy–aluminum interfaces , 2003 .

[99]  Hassan Aref,et al.  Topological fluid mechanics of point vortex motions , 1999 .

[100]  J. Dolbow,et al.  Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test , 2004 .

[101]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[102]  D. N. Riahi,et al.  Effect of rotation on surface tension driven flow during protein crystallization , 2003 .

[103]  Conyers Herring,et al.  Surface Tension as a Motivation for Sintering , 1999 .

[104]  D. N. Riahi,et al.  Computational studies of the effect of rotation on convection during protein crystallization , 2003 .

[105]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[106]  Hassan Aref,et al.  The development of chaotic advection , 2002 .

[107]  D. Beebe,et al.  Particle imaging technique for measuring the deformation rate of hydrogel microstructures , 2000 .

[108]  R. Panat,et al.  Rumpling instability in thermal barrier systems under isothermal conditions in vacuum , 2005 .

[109]  K. Hsia,et al.  Locking of electric-field-induced non-180° domain switching and phase transition in ferroelectric materials upon cyclic electric fatigue , 2003 .

[110]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .