Quantum secure direct communication based on single-photon Bell-state measurement

Security loopholes exploiting the flaws of practical apparatus, especially non-ideal photon detectors, are pressing issues in practical quantum communication. We propose a simple quantum secure direct communication protocol based on single-photon Bell-state measurement and remove side-channel attacks on photon detectors. This quantum communication protocol in principle works in a deterministic way, and it does not require the two-photon interference of photons from independent sources. The single-photon Bell-state measurement with a unity efficiency can be constructed with only linear optics, which significantly simplifies its experimental implementation. Furthermore, we prove that our quantum secure direct communication protocol is immune to general detector-side-channel attacks.

[1]  Qiang Ni,et al.  Design and analysis of random multiple access quantum key distribution , 2020, Quantum Eng..

[2]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[3]  Gui-Lu Long,et al.  Device-independent quantum secure direct communication against collective attacks. , 2020, Science bulletin.

[4]  Liuguo Yin,et al.  Security of quantum secure direct communication based on Wyner's wiretap channel theory , 2019, Quantum Eng..

[5]  Experimental Two‐Way Communication with One Photon , 2019, Advanced Quantum Technologies.

[6]  Zhenhua Li,et al.  Long-distance measurement-device–independent quantum secure direct communication , 2019, EPL (Europhysics Letters).

[7]  Scott A. Hamilton,et al.  Quantum Low Probability of Intercept , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[8]  F. Nori,et al.  Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering , 2018, Physical Review A.

[9]  Liuguo Yin,et al.  Implementation and security analysis of practical quantum secure direct communication , 2018, Light: Science & Applications.

[10]  Gui-Lu Long,et al.  Measurement-device-independent quantum secure direct communication , 2018, Science China Physics, Mechanics & Astronomy.

[11]  Franco Nori,et al.  Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity. , 2018, Physical review letters.

[12]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[13]  Liuguo Yin,et al.  Measurement-device-independent quantum communication without encryption. , 2018, Science bulletin.

[14]  F. Nori,et al.  Nonreciprocal Photon Blockade. , 2018, Physical review letters.

[15]  Wei Zhong,et al.  Three-step three-party quantum secure direct communication , 2018, Science China Physics, Mechanics & Astronomy.

[16]  Vadim Makarov,et al.  Implementation vulnerabilities in general quantum cryptography , 2018, New Journal of Physics.

[17]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[18]  Norbert Lütkenhaus,et al.  Eavesdropping and countermeasures for backflash side channel in quantum cryptography. , 2018, Optics express.

[19]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[20]  A. Lemaître,et al.  Supplemental Materials : A solid-state single-photon filter , 2016 .

[21]  Wei Zhang,et al.  Experimental long-distance quantum secure direct communication. , 2017, Science bulletin.

[22]  Li Dong,et al.  Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses. , 2017, Optics express.

[23]  Xi Chen,et al.  Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. , 2017, Optics express.

[24]  Dong Jiang,et al.  Deterministic secure quantum communication using a single d-level system , 2017, Scientific Reports.

[25]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[26]  Boris Korzh,et al.  Detector-device-independent quantum key distribution: Security analysis and fast implementation , 2016, 1607.05435.

[27]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[28]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[29]  Seth Lloyd,et al.  Quantum enigma machine: Experimentally demonstrating quantum data locking. , 2016, Physical review. A.

[30]  Franco Nori,et al.  Experimental quantum forgery of quantum optical money , 2016, 1604.04453.

[31]  Travis S. Humble,et al.  Superdense Coding Interleaved with Forward Error Correction , 2016, ArXiv.

[32]  E. Knill,et al.  A strong loophole-free test of local realism , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[33]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[34]  Ahmed Farouk,et al.  A generalized architecture of quantum secure direct communication for N disjointed users with authentication , 2015, Scientific Reports.

[35]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[36]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[37]  Hao Yajiang,et al.  Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature* , 2015 .

[38]  Wei Chen,et al.  A simple implementation of quantum key distribution based on single-photon Bell state measurement , 2015 .

[39]  Shihan Sajeed,et al.  Publisher's Note: Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing [Phys. Rev. A91, 032326 (2015)] , 2015 .

[40]  Shihan Sajeed,et al.  Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch , 2015, 1502.02785.

[41]  Yao Fu,et al.  Long-distance measurement-device-independent multiparty quantum communication. , 2014, Physical review letters.

[42]  G. Lima,et al.  Quantum key distribution with untrusted detectors , 2014, 1410.1422.

[43]  Rob Thew,et al.  Detector-device-independent quantum key distribution , 2014, 1410.1850.

[44]  Keyu Xia,et al.  Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling , 2014 .

[45]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[46]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[47]  Franco Nori,et al.  Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences , 2013, 1310.7286.

[48]  Mu-Sheng Jiang,et al.  Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems , 2013 .

[49]  Hoi-Kwong Lo,et al.  Long distance measurement-device-independent quantum key distribution with entangled photon sources , 2013, 1306.5814.

[50]  Yong Li,et al.  Quantum routing of single photons with a cyclic three-level system. , 2013, Physical review letters.

[51]  R. Renner,et al.  Device-Independent Quantum Key Distribution with Local Bell Test , 2012, 1208.0023.

[52]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[53]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[54]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[55]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[56]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[57]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[58]  Vadim Makarov,et al.  Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)] , 2008 .

[59]  Yan Xia,et al.  Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding , 2007 .

[60]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[61]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[62]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[63]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[64]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[65]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2004, Physical review letters.

[66]  Yoon-Ho Kim,et al.  Single-photon two-qubit entangled states: preparation and measurement , 2003, 2005 Quantum Electronics and Laser Science Conference.

[67]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[68]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[69]  Fengli Yan,et al.  Secure direct communication using Einstein-Podolsky-Rosen pairs and teleportation , 2003, quant-ph/0311132.

[70]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[71]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[72]  Heonoh Kim,et al.  Quantum-eraser experiment with frequency-entangled photon pairs , 2003 .

[73]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[74]  Yuan Feng,et al.  Mathematical nature of and a family of lower bounds for the success probability of unambiguous discrimination , 2002 .

[75]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[76]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[77]  H. Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001, quant-ph/0111106.

[78]  Sergei P. Kulik,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical review letters.

[79]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[80]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[81]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[82]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[83]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.