Fault diagnostic of induction motors for equipment reliability and health maintenance based upon Fourier and wavelet analysis

The motor is the workhorse of industry. The issues of preventive and condition-based maintenance, on-line monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This paper introduces fault detection for induction motors. Stator currents are measured by current meters and stored by time domain. The time domain is not suitable for representing current signals, so the frequency domain is applied to display signals. The Fourier transform is employed to convert signals. After signal conversion, signal features must be extracted by signal processing such as wavelet and spectrum analysis. Features are entered in a pattern classification model such as a neural network model, a polynomial neural network, or a fuzzy inference model. This paper describes fault detection results that use Fourier and wavelet analysis. This combined approach is very useful and powerful for detection signal features.

[1]  Jafar Milimonfared,et al.  Broken bar detection in induction motor via wavelet transformation , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[2]  Hamid A. Toliyat,et al.  Condition monitoring and fault diagnosis of electrical machines-a review , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[3]  Peter Vas,et al.  Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines , 1993 .

[4]  H.A. Toliyat,et al.  Pattern recognition-a technique for induction machines rotor fault detection "eccentricity and broken bar fault" , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[5]  Birsen Yazici,et al.  An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current , 1999 .