Terahertz Imaging Radar With Inverse Aperture Synthesis Techniques: System Structure, Signal Processing, and Experiment Results

The combination of the all solid-state terahertz (THz) technology and synthetic aperture radar imaging technique leads to small imaging sensors of high resolution. In this paper, we present an active frequency-modulated continuous-wave THz imaging radar system with inverse aperture synthesis technique to image objects in centimeter-scale resolution in two dimensions. Its high-range resolution is achieved through the use of broadband sweep signal, whose frequency ranges from 336.6 to 343.8 GHz, and the 1-D aperture synthesis enables the improvement of the cross-range resolution. In order to optimize the range resolution, a nonlinearity calibration approach is presented to solve the signal distortion. To verify the imaging performance of the THz radar, the inverse synthetic aperture radar experiments are performed and the imaging results obtained by the 2-D fast Fourier transform method and back-projection algorithm, respectively, show that the THz radar can achieve high resolution in the range and azimuth dimensions.

[1]  C.H. Wang,et al.  Improved Near-Field Radar Cross-Section Measurement Technique , 2009, IEEE Antennas and Wireless Propagation Letters.

[2]  Jason C. Dickinson,et al.  Terahertz imaging of subjects with concealed weapons , 2006, SPIE Defense + Commercial Sensing.

[3]  P. Siegel Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[4]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[5]  H. Essen,et al.  Very high bandwidth millimetre-wave radar , 2005 .

[6]  P. Siegel THz Instruments for Space , 2007, IEEE Transactions on Antennas and Propagation.

[7]  Ying Tan,et al.  Segmentation of PolSAR image by using an automatic initialized variational model and a dual optimization approach , 2013, EURASIP J. Wirel. Commun. Netw..

[8]  Jianyu Yang,et al.  A hierarchical propelled fusion strategy for SAR automatic target recognition , 2013, EURASIP J. Wirel. Commun. Netw..

[9]  Leo P. Ligthart,et al.  Range Non-linearities Correction in FMCW SAR , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[10]  Cheng Wang,et al.  Real-Time Imaging With a 140 GHz Inverse Synthetic Aperture Radar , 2013, IEEE Transactions on Terahertz Science and Technology.

[11]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[12]  Leo P. Ligthart,et al.  Signal Processing for FMCW SAR , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Caner Özdemii̇r,et al.  Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms , 2012 .

[14]  Nuria Llombart,et al.  THz Imaging Radar for Standoff Personnel Screening , 2011, IEEE Transactions on Terahertz Science and Technology.

[15]  Patrick Lj Valdez,et al.  Standoff concealed weapon detection using a 350-GHz radar imaging system , 2010, Defense + Commercial Sensing.

[16]  G. Chattopadhyay,et al.  Schottky diode-based terahertz frequency multipliers and mixers , 2010 .

[17]  Eddie L. Jacobs,et al.  Active and passive millimeter- and sub-millimeter-wave imaging , 2005, SPIE Security + Defence.

[18]  H.B. Wallace,et al.  Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.

[19]  L. Jofre,et al.  Spherical wave near-field imaging and radar cross-section measurement , 1998 .

[20]  K. Sertel,et al.  A Broadband Focal Plane Array Camera for Real-time THz Imaging Applications , 2013, IEEE Transactions on Antennas and Propagation.

[21]  Yosef Pinhasi,et al.  Linear FM radar operating in the Tera-Hertz regime for concealed objects detection , 2009, 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems.

[22]  I. Mehdi,et al.  600 GHz Imaging Radar with 2 cm Range Resolution , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[23]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[24]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[25]  Ralf Henneberger,et al.  Fast Active THz Cameras with Ranging Capabilities , 2009 .

[26]  O. Loffeld,et al.  THz 3-D Image Formation Using SAR Techniques: Simulation, Processing and Experimental Results , 2013, IEEE Transactions on Terahertz Science and Technology.

[27]  A. Tessmann,et al.  A high performance 220-GHz broadband experimental radar , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[28]  Caner Ozdemir,et al.  Inverse Synthetic Aperture Radar Imaging with MATLAB® Algorithms , 2012 .

[29]  Qianqian Yang,et al.  Trench-Zohar inversion for SAR sensor network 3-D imaging based on compressive sensing , 2013, Int. J. Sens. Networks.

[30]  Janusz Grzyb,et al.  A broadband 0.6 to 1 THz CMOS imaging detector with an integrated lens , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[31]  T. Eibert,et al.  Comparison and Application of Near-Field ISAR Imaging Techniques for Far-Field Radar Cross Section Determination , 2006, IEEE Transactions on Antennas and Propagation.

[32]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[33]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[34]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[35]  G. Richard Huguenin A millimeter wave focal plane array imager , 1994, International Conference on Millimeter and Submillimeter Waves and Applications.

[36]  W. R. Tribe,et al.  Security applications of terahertz technology , 2003, SPIE Defense + Commercial Sensing.