A computational ecosystem for optimization: review and perspectives for future research

Nature exhibits extremely diverse, dynamic, robust, complex and fascinating phenomena and, since long ago, it has been a great source of inspiration for solving hard and complex problems in computer science. Hence, the search for plausible biologically inspired ideas, models and computational paradigms always drew the interest of computer scientists. It is worth mentioning that most bio-inspired algorithms only focuses on and took inspiration from specific aspects of the natural phenomena. However, in nature, biological systems are interlinked to each other, e.g., biological ecosystems. The ecosystem as a whole can be composed by species that respond to environmental and ecological stimuli. This work reviews the theoretical foundations and applications of a computational ecosystem for optimization, named ECO. Also, as some concepts and processes inherent to biological ecosystems have already been explored in the ECO approach, some related works are described. Finally, several future research directions are pointed.

[1]  Robert M. May,et al.  Theoretical Ecology: Principles and Applications , 1977 .

[2]  Rafael S. Parpinelli,et al.  Biological plausibility in optimisation: an ecosystemic view , 2012, Int. J. Bio Inspired Comput..

[3]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[4]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[5]  Rafael S. Parpinelli,et al.  An Ecology-Based Evolutionary Algorithm Applied to the 2D-AB Off-Lattice Protein Structure Prediction Problem , 2013, 2013 Brazilian Conference on Intelligent Systems.

[6]  Aboul Ella Hassanien,et al.  Computational Intelligence in Biomedicine and Bioinformatics, Current Trends and Applications , 2008, Computational Intelligence in Biomedicine and Bioinformatics.

[7]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[8]  Dumitru Dumitrescu,et al.  Guest editorial: special issue on nature inspired cooperative strategies for optimization , 2012, Memetic Comput..

[9]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[10]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[11]  P. P. Chaudhuri,et al.  A Survey on Cellular Automata ∗ , 2003 .

[12]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  Mikael Andersson,et al.  Probability, Statistics, and Stochastic Processes: Olofsson/Probability 2E , 2005 .

[15]  M. Kamel,et al.  A Taxonomy of Cooperative Search Algorithms , 2005, Hybrid Metaheuristics.

[16]  Giovanni Squillero,et al.  A benchmark for cooperative coevolution , 2012, Memetic Comput..

[17]  Heitor Silvério Lopes Evolutionary Algorithms for the Protein Folding Problem: A Review and Current Trends , 2008, Computational Intelligence in Biomedicine and Bioinformatics.

[18]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[19]  Fionn Murtagh,et al.  Algorithms for hierarchical clustering: an overview , 2012, WIREs Data Mining Knowl. Discov..

[20]  Rafael Stubs Parpinelli,et al.  Parallel Approaches for the Artificial Bee Colony Algorithm , 2011 .

[21]  Wenyin Gong,et al.  DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization , 2010, Soft Comput..

[22]  Rafael S. Parpinelli,et al.  A Hierarchical Clustering Strategy to Improve the Biological Plausibility of an Ecology-Based Evolutionary Algorithm , 2012, IBERAMIA.

[23]  M. Begon,et al.  Ecology: From Individuals to Ecosystems , 2005 .

[24]  Nitin Malik Artificial Neural Networks and their Applications , 2005, ArXiv.

[25]  Rafael S. Parpinelli,et al.  Performance Analysis of Swarm Intelligence Algorithms for the 3D-AB off-lattice Protein Folding Problem , 2014, J. Multiple Valued Log. Soft Comput..

[26]  Lei Tang,et al.  Ecosystem Model Based Grid Resource Optimization Management , 2007 .

[27]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[28]  Heitor Silverio Lopes,et al.  A Heterogeneous Parallel Ecologically-Inspired Approach Applied to the 3D-AB Off-Lattice Protein Structure Prediction Problem , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[29]  S. Siva Sathya,et al.  A Survey of Bio inspired Optimization Algorithms , 2012 .

[30]  Antonio D. Masegosa,et al.  A cooperative strategy for solving dynamic optimization problems , 2011, Memetic Comput..

[31]  Pontifical Catholic,et al.  Diversity-Based Adaptive Evolutionary Algorithms , 2010 .

[32]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[33]  Zhanshan Ma,et al.  Ecological 'theatre' for evolutionary computing 'play': some insights from population ecology and evolutionary ecology , 2011, Int. J. Bio Inspired Comput..

[34]  Rafael S. Parpinelli,et al.  Parallelism, hybridism and coevolution in a multi‐level ABC‐GA approach for the protein structure prediction problem , 2012, Concurr. Comput. Pract. Exp..

[35]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[36]  Xin-She Yang,et al.  Bat algorithm: literature review and applications , 2013, Int. J. Bio Inspired Comput..

[37]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[38]  Peter Olofsson,et al.  Probability, Statistics, and Stochastic Processes , 2005 .

[39]  Frederic Fol Leymarie,et al.  Real-Time Behavioral Animation of Humanoid Non-Player Characters with a Computational Ecosystem , 2013, IVA.

[40]  Rafael S. Parpinelli,et al.  An Ecology-Based Heterogeneous Approach for Cooperative Search , 2012, SBIA.

[41]  Jonas Krause,et al.  A Survey of Swarm Algorithms Applied to Discrete Optimization Problems , 2013 .

[42]  Richard Chbeir Proceedings of the International Conference on Management of Emergent Digital EcoSystems , 2010, MEDES 2010.

[43]  Gerard Briscoe,et al.  Computing of applied digital ecosystems , 2009, MEDES.

[44]  Hogg,et al.  Dynamics of computational ecosystems. , 1989, Physical review. A, General physics.

[45]  Tad Hogg,et al.  Computational Ecosystems in a Changing Environment , 1991 .

[46]  Rafael S. Parpinelli,et al.  Population Resizing Using Nonlinear Dynamics in an Ecology-Based Approach , 2012, IDEAL.

[47]  Zhihua Cui,et al.  Swarm Intelligence and Bio-Inspired Computation: Theory and Applications , 2013 .

[48]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[49]  Rafael S. Parpinelli,et al.  An eco-inspired evolutionary algorithm applied to numerical optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[50]  José L. Verdegay,et al.  On the Performance of Homogeneous and Heterogeneous Cooperative Search Strategies , 2008, NICSO.