The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension

Abstract New extensions of a model for the growth and coalescence of ellipsoidal voids based on the Gurson formalism are proposed in order to treat problems involving shear and/or voids axis not necessarily aligned with the main loading direction, under plane strain loading conditions. These extensions are motivated and validated using 3D finite element void cell calculations with overall plane strain enforced in one direction. The starting point is the Gologanu model dealing with spheroidal void shape. A void rotation law based on homogenization theory is coupled to this damage model. The predictions of the model closely agree with the 3D cell calculations, capturing the effect of the initial void shape and orientation on the void rotation rate. An empirical correction is also introduced for the change of the void aspect ratio in the plane transverse to the main axis of the void departing from its initially circular shape. This correction is needed for an accurate prediction of the onset of coalescence. Next, a new approach is proposed to take strain hardening into account within the Thomason criterion for internal necking, avoiding the use of strain hardening-dependent fitting parameters. The coalescence criterion is generalized to any possible direction of the coalescence plane and void orientation. Finally, the model is supplemented by a mathematical description of the final drop of the stress carrying capacity during coalescence. The entire model is developed for plane strain conditions, setting the path to a 3D extension. After validation of the model, a parametric study addresses the effect of shear on the ductility of metallic alloys for a range of microstructural and flow parameters, under different stress states. In general, the presence of shear, for identical stress triaxiality, decreases the ductility, partly explaining recent experimental results obtained in the low stress triaxiality regime.

[1]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[2]  N. Fleck,et al.  Softening by void nucleation and growth in tension and shear , 1989 .

[3]  Jwo Pan,et al.  Approximate yield criteria for anisotropic porous ductile sheet metals , 1997 .

[4]  J. Leblond,et al.  Accelerated void growth in porous ductile solids containing two populations of cavities , 2000 .

[5]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[6]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[7]  W. Brocks,et al.  On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening , 2003 .

[8]  V. Tvergaard Shear deformation of voids with contact modelled by internal pressure , 2008 .

[9]  A. K. Pilkey,et al.  Void coalescence within periodic clusters of particles , 2003 .

[10]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[11]  Jacques Besson,et al.  An extension of the Green and Gurson models to kinematic hardening , 2003 .

[12]  R. Becker,et al.  An analysis of ductile failure by grain boundary void growth , 1989 .

[13]  J. Leblond,et al.  A theoretical approach of strain localization within thin planar bands in porous ductile materials , 2008 .

[14]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[15]  D. Fabrègue,et al.  Corrigendum to “A constitutive model for elastoplastic solids containing primary and secondary voids” [J. Mech. Phys. Solids 56 (2008) 719–741] , 2009 .

[16]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[17]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[18]  Thomas Pardoen,et al.  Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys , 2005 .

[19]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear : Experiments , 2007 .

[20]  Jacques Besson,et al.  Modeling of scatter and size effect in ductile fracture: application to thermal embrittlement of duplex stainless steels , 2000 .

[21]  R. McMeeking,et al.  Void Growth in Elastic-Plastic Materials , 1989 .

[22]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[23]  C. Shih,et al.  Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales , 1995 .

[24]  D. Fabrègue,et al.  Multiscale Analysis of the Strength and Ductility of AA 6056 Aluminum Friction Stir Welds , 2007 .

[25]  Albert S. Kobayashi,et al.  Elastic-Plastic Fracture , 1979 .

[26]  R. Becker The effect of porosity distribution on ductile failure , 1987 .

[27]  Thomas Pardoen,et al.  Micromechanics-based model for trends in toughness of ductile metals , 2003 .

[28]  John W. Hutchinson,et al.  A computational approach to ductile crack growth under large scale yielding conditions , 1995 .

[29]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[30]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[31]  On modelling the growth and the orientation changes of ellipsoidal voids in a rigid plastic matrix , 2003 .

[32]  Jacques Besson,et al.  An anisotropic Gurson type model to represent the ductile rupture of hydrided Zircaloy-4 sheets , 2000 .

[33]  Claudio Ruggieri,et al.  Numerical modeling of ductile crack growth in 3-D using computational cell elements , 1996 .

[34]  Patrick Onck,et al.  Growth of an initially sharp crack by grain boundary cavitation , 1998 .

[35]  N. Fleck,et al.  Void growth in shear , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[36]  W. Brocks,et al.  Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials , 1995 .

[37]  Jean-Baptiste Leblond,et al.  An improved Gurson-type model for hardenable ductile metals , 1995 .

[38]  Thomas Pardoen,et al.  Thickness dependence of cracking resistance in thin aluminium plates , 1999 .

[39]  P. Onck,et al.  Multiscale modeling of ductile failure in metallic alloys , 2010 .

[40]  A. Benzerga,et al.  A constitutive model for plastically anisotropic solids with non-spherical voids , 2010 .

[41]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[42]  Pedro Ponte Castañeda,et al.  A general constitutive theory for linear and nonlinear particulate media with microstructure evolution , 1998 .

[43]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[44]  K. L. Nielsen,et al.  Effect of a shear modified Gurson model on damage development in a FSW tensile specimen , 2009 .

[45]  I. Sinclair,et al.  Evolution of voids during ductile crack propagation in an aluminium alloy sheet toughness test studied by synchrotron radiation computed tomography , 2008 .

[46]  Jacques Besson,et al.  Anisotropic ductile fracture: Part II: theory , 2004 .

[47]  Thomas Pardoen,et al.  A micromechanics based damage model for composite materials , 2010 .

[48]  K. L. Nielsen,et al.  Modelling of plastic flow localisation and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law , 2010 .

[49]  Viggo Tvergaard,et al.  Studies of void growth in a thin ductile layer between ceramics , 1997 .

[50]  J. Willis,et al.  The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. II. Examples , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Zhiliang Zhang,et al.  A new failure criterion for the Gurson-Tvergaard dilational constitutive model , 1994 .

[52]  K. L. Nielsen,et al.  Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV , 2010 .

[53]  N. Aravas,et al.  Porous Metals with Developing Anisotropy: Constitutive Models, Computational Issues and Applications to Deformation Processing , 2000 .

[54]  John W. Hutchinson,et al.  Void Growth and Collapse in Viscous Solids , 1982 .

[55]  M. Gologanu,et al.  External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void , 2008 .

[56]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – I. Micromechanics calibration , 1998 .

[57]  V. monchiet,et al.  Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids , 2008 .

[58]  A. A. Benzerga Micromechanics of coalescence in ductile fracture , 2002 .

[59]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[60]  Thomas Pardoen,et al.  Anisotropic ductile fracture of Al 2024 alloys , 2008 .

[61]  V. Tvergaard Behaviour of voids in a shear field , 2009 .

[62]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – II. Fracture- process calibration and verification , 1998 .

[63]  J. Pan,et al.  An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals with Planar Anisotropy , 2004 .

[64]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[65]  P. Thomason,et al.  Ductile Fracture of Metals , 1990 .

[66]  V. Tvergaard,et al.  Growth and coalescence of non-spherical voids in metals deformed at elevated temperature , 2003 .

[67]  J. Leblond,et al.  Effect of void locking by inclusions upon the plastic behavior of porous ductile solids¿I: theoretical modeling and numerical study of void growth , 2004 .

[68]  P. Thomason,et al.  Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids , 1985 .

[69]  Christian Thaulow,et al.  A complete Gurson model approach for ductile fracture , 2000 .

[70]  Y. Bréchet,et al.  Micromechanics of high-temperature damage in dual-phase stainless steel , 2010 .

[71]  R. Becker,et al.  The effect of void shape on void growth and ductility in axisymmetric tension tests , 1989 .

[72]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[73]  A. Benzerga,et al.  An approximate yield criterion for anisotropic porous media , 2008 .

[74]  R. H. Dodds,et al.  Ductile crack growth in pre-cracked CVN specimens: numerical studies , 1998 .

[75]  M. Zaidman,et al.  Constitutive models for porous materials with evolving microstructure , 1994 .

[76]  T. Pardoen,et al.  Growth and coalescence of penny-shaped voids in metallic alloys , 2006 .

[77]  L. Xue Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading , 2007 .

[78]  A. Needleman,et al.  A tangent modulus method for rate dependent solids , 1984 .

[79]  P. Thomason,et al.  A three-dimensional model for ductile fracture by the growth and coalescence of microvoids , 1985 .

[80]  P. Houtte,et al.  Void growth and coalescence in single crystals , 2010 .

[81]  Thomas Pardoen,et al.  Numerical simulation of low stress triaxiality ductile fracture , 2006 .

[82]  Y. Bréchet,et al.  Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys , 2004 .

[83]  F. Delannay,et al.  Micromechanics of room and high temperature fracture in 6xxx Al alloys , 2007 .

[84]  John W. Hutchinson,et al.  Influence of yield surface curvature on flow localization in dilatant plasticity , 1985 .

[85]  J. Devaux,et al.  Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes , 1979 .

[86]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[87]  A. Pineau,et al.  Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain , 2002 .

[88]  P. P. Castañeda,et al.  Numerical methods for porous metals with deformation-induced anisotropy , 2004 .

[89]  J. Leblond,et al.  A new model for porous nonlinear viscous solids incorporating void shape effects – I: Theory , 2005 .

[90]  Thomas Pardoen,et al.  A New Model for Void Coalescence by Internal Necking , 2010 .

[91]  Franck J. Vernerey,et al.  An interactive micro-void shear localization mechanism in high strength steels , 2007 .

[92]  D. Fabrègue,et al.  A constitutive model for elastoplastic solids containing primary and secondary voids , 2008 .

[93]  W. Brocks,et al.  Micromechanical modelling of the behaviour of ductile materials including particles , 1997 .

[94]  A. Deschamps,et al.  Grain boundary versus transgranular ductile failure , 2003 .

[95]  Viggo Tvergaard,et al.  An analysis of ductile rupture modes at a crack tip , 1987 .