Chapter 4 OMVPE Growth of AlGalnP for High-Efficiency Visible Light-Emitting Diodes

Publisher Summary This chapter describes the organometallic vaporphase epitaxy (OMVPE) growth of Aluminium gallium indium phosphide (AlGaInP) for high-efficiency LED applications. First, a broad overview of growth conditions and the requirements for growth of high-quality optoelectronic devices is provided. The properties of the epilayer depend strongly on the growth conditions as well as the ability to control background impurity incorporation, especially oxygen. Inability to effectively minimize oxygen contamination in the manufacture AlGaInP LEDs can result in poor reproducibility due to variation in source purity and other factors. The production yield for these AlGaInP LEDs is expected to increase each year as manufacturers continue to improve the growth process and increase the productivity of the OMVPE reactors. The chapter focuses on a variety of issues that are central to the growth process. These include n- and p-type doping, ordering effects, unintentional hydrogen passivation, and residual oxygen incorporation. A variety of manufacturing issues, such as uniformity, run-to-run reproducibility, and safety are also discussed.

[1]  H. Terao,et al.  Effects of oxygen and water vapour introduction during MOCVD growth of GaAlAs , 1984 .

[2]  T. Kuech,et al.  Mechanism of carbon incorporation in MOCVD GaAs , 1984 .

[3]  A. Kozen,et al.  Metalorganic–vapor‐phase‐epitaxial growth of Mg‐doped Ga1−xAlxAs layers and their properties , 1986 .

[4]  M. A. Shahid,et al.  Disordering of the ordered structure in MOCVD-grown GaInP and AlGaInP by impurity diffusion and thermal annealing , 1988 .

[5]  G. B. Stringfellow,et al.  OMVPE growth of InP and Ga0.47ln0.53as using ethyldimethylindium , 1986 .

[6]  G. B. Stringfellow,et al.  Atmospheric pressure organometallic vapor‐phase epitaxial growth of (AlxGa1−x)0.51In0.49P (x from 0 to 1) using trimethylalkyls , 1990 .

[7]  N. Holonyak,et al.  HYDROGENATION-DEFINED STRIPE-GEOMETRY IN0.5(ALXGA1-X)0.5P QUANTUM-WELL LASERS , 1990 .

[8]  D. Walker,et al.  Multi-wafer growth of highly uniform InGaP/GaAs by low pressure MOVPE , 1992 .

[9]  G. Scilla,et al.  Quantitative oxygen measurements in OMVPE AlxGa1−xAs grown by methyl precursors , 1992 .

[10]  Gerald B. Stringfellow,et al.  Effect of mismatch strain on band gap in III‐V semiconductors , 1985 .

[11]  G. Landgren,et al.  Abruptp- type doping transitions using bis-(cyclopentadienyl)-magnesium in metal-organic vapor phase epitaxy of GaAs , 1988 .

[12]  Masaki Okajima,et al.  Reduction of residual oxygen incorporation and deep levels by substrate misorientation in InGaAlP alloys , 1993 .

[13]  A. Ishibashi,et al.  Suppression of Zn diffusion due to hydrogen passivation in p ‐AlGaInP , 1994 .

[14]  Tu,et al.  Dopant-type effects on the diffusion of deuterium in GaAs. , 1987, Physical review. B, Condensed matter.

[15]  P. Wisk,et al.  Mg doping of InP and InGaAs grown by metalorganic molecular beam epitaxy using bis‐cyclopentadienyl magnesium , 1993 .

[16]  D. Schmitz,et al.  Comparison of ethyldimethylindium (EDMIn) and trimethylindium (TMIn) for GaInAs and InP growth by LP-MOVPE , 1988 .

[17]  Masao Ikeda,et al.  Room-temperature continuous-wave operation of an AlGaInP double heterostructure laser grown by atmospheric pressure metalorganic chemical vapor deposition , 1985 .

[18]  M. Ludowise,et al.  H2Se “memory effects” upon doping profiles in GaAs grown by metalorganic chemical vapor deposition (MO-CVD) , 1984 .

[19]  M. Kondow,et al.  Effect of substrate orientation on Zn-doping of AIGalnP grown by atmospheric pressure orgamometallic vapor phase epitaxy , 1990 .

[20]  S. Takamiya,et al.  Influence of oxygen on the threshold current of AlGaAs multiple quantum well lasers grown by metalorganic chemical vapor deposition , 1994 .

[21]  A. W. Nelson,et al.  Effect of cooling ambient on electrical activation of dopants in MOVPE of InP , 1988 .

[22]  D. Schmitz,et al.  GaInP multiwafer growth by LP-MOVPE for HBTs, lasers, LEDs or solar cells , 1992 .

[23]  G. E. Stillman,et al.  Species dependence of passivation and reactivation of acceptors in hydrogenated GaAs , 1990 .

[24]  Yukie Nishikawa,et al.  Effects of Zn Electrical Activity on Band Gap Energy in Zn-Doped InGaAlP Grown by Metalorganic Chemical Vapor Deposition , 1989 .

[25]  W. S. Hobson The Role of Hydrogen in the Growth of III-V Compound Semiconductors by OMVPE , 1993 .

[26]  G. B. Stringfellow,et al.  Atomic ordering in III/V semiconductor alloys , 1991 .

[27]  S. Hersee,et al.  A new approach to the “gettering” of oxygen during the growth of GaAlAs by low pressure MOCVD , 1981 .

[28]  K. Kishino,et al.  High‐optical‐quality GaInP and GaInP/AlInP double heterostructure lasers grown on GaAs substrates by gas‐source molecular‐beam epitaxy , 1989 .

[29]  N. Mason,et al.  Factors influencing doping control and abrupt metallurgical transitions during atmospheric pressure MOVPE growth of AlGaAs and GaAs , 1984 .

[30]  John P. R. David,et al.  Electronic band structure of AlGaInP grown by solid‐source molecular‐beam epitaxy , 1994 .

[31]  C. Button,et al.  The incorporation of oxygen into InAlAs, the role of trimethylindium (TMI) , 1994 .

[32]  G. Landgren,et al.  Abrupt Mg doping profiles in GaAs grown by metalorganic vapor phase epitaxy , 1988 .

[33]  Masayuki Ishikawa,et al.  Room temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition , 1986 .

[34]  M. Panish,et al.  A capillary liquid film technique for solution epitaxy of III–V compounds , 1971 .

[35]  Gerald B. Stringfellow,et al.  Mass spectrometric studies of phosphine pyrolysis and OMVPE growth of InP , 1987 .

[36]  A. Gomyo,et al.  Nonexistence of Long-Range Order in Ga0.5In0.5P Epitaxial Layers Grown on (111)B and (110)GaAs Substrates , 1988 .

[37]  G. B. Stringfellow,et al.  Control and characterization of ordering in GaInP , 1993 .

[38]  Makoto Kondo,et al.  Crystallographic orientation dependence of impurity incorporation into III‐V compound semiconductors grown by metalorganic vapor phase epitaxy , 1994 .

[39]  P. Mooney,et al.  Assessment of oxygen in gallium arsenide by infrared local vibrational mode spectroscopy , 1989 .

[40]  Kohroh Kobayashi,et al.  Studies of GaxIn1−xP layers grown by metalorganic vapor phase epitaxy; Effects of V/III ratio and growth temperature , 1986 .

[41]  Takashi Mukai,et al.  High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes , 1994 .

[42]  C. P. Kuo,et al.  Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .

[43]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[44]  G. Hatakoshi,et al.  High-Efficiency InGaAlP Visible Light-Emitting Diodes , 1992 .

[45]  G. B. Stringfellow,et al.  Use of tertiarybutylarsine for GaAs growth , 1987 .

[46]  Akiko Gomyo,et al.  Large (6°) Off-Angle Effects on Sublattice Ordering and Band-Gap Energy in Ga0.5In0.5P Grown on (001) GaAs Substrates , 1989 .

[47]  G. B. Stringfellow,et al.  Oxygen gettering by graphite baffles during organometallic vapor phase epitaxial AlGaAs growth , 1982 .

[48]  G. Stillman,et al.  Hydrogenation of Si- and Be-doped InGaP , 1990 .

[49]  K. Nakajima,et al.  Study on radiative efficiency in AlGaInP/GaInP double-heterostructures: influence of deep level in cladding layers , 1991 .

[50]  A. Tavendale,et al.  Field drift of the hydrogen‐related, acceptor‐neutralizing defect in diodes from hydrogenated silicon , 1985 .

[51]  G. B. Stringfellow,et al.  Use of tertiarybutylphosphine for the growth of InP and GaAs1-xPx , 1988 .

[52]  Ferreira,et al.  Ordering of isovalent intersemiconductor alloys. , 1988, Physical review. B, Condensed matter.

[53]  B. Meyerson,et al.  Silicon doping of GaAs and AlxGa1−xAs using disilane in metalorganic chemical vapor deposition , 1984 .

[54]  A. W. Nelson,et al.  A study of p-type dopants for InP grown by adduct MOVPE , 1984 .

[55]  M. Skowronski,et al.  Location of energy levels of oxygen-vacancy complex in GaAs , 1990 .

[56]  Y. Li,et al.  Influence of the Temperature of the Reactor Top Wall on Growth-Processes in Horizontal Movpe Reactors , 1995 .

[57]  G. Hatakoshi,et al.  Effects of residual impurities on Zn electrical activity in Zn-doped InGaAlP grown by metalorganic chemical vapor deposition , 1992 .

[58]  G. B. Stringfellow Organometallic Vapor-Phase Epitaxy: Theory and Practice , 1989 .

[59]  Sarah Kurtz,et al.  EFFECT OF GROWTH RATE ON THE BAND GAP OF GA0.5IN0.5P , 1990 .

[60]  J. Chevallier,et al.  Spectroscopic evidence for hydrogen-phosphorus pairing in zinc-doped InP containing hydrogen , 1989 .

[61]  G. B. Stringfellow,et al.  The effect of oxygen incorporation in semi‐insulating (AlxGa1−x)yIn1−yP , 1992 .

[62]  K. Yodoshi,et al.  AlGaInP visible laser diodes grown on misoriented substrates , 1991 .

[63]  Makoto Kondo,et al.  Origin of nonradiative recombination centers in AlGaInP grown by metalorganic vapor phase epitaxy , 1994 .

[64]  G. B. Stringfellow VPE Growth of III/V Semiconductors , 1978 .

[65]  V. Deline,et al.  Properties of high‐purity AlxGa1−xAs grown by the metalorganic vapor‐phase‐epitaxy technique using methyl precursors , 1987 .

[66]  K. Wakita,et al.  InGaP/InGaAlP double-heterostructure and multiquantum-well laser diodes grown by molecular-beam epitaxy , 1987 .

[67]  R. Fletcher,et al.  The growth and properties of high performance AlGalnP emitters using a lattice mismatched GaP window layer , 1991 .

[68]  Chun-Yen Chang,et al.  Magnesium doping of InGaAlP grown by low‐pressure metalorganic chemical vapor deposition , 1994 .

[69]  C. Bulle-lieuwma,et al.  High quality AlxGa1-x-yInyP alloys grown by MOVPE on (311)B GaAs substrates , 1991 .

[70]  K. Hess,et al.  Integrated safety system for MOCVD laboratory , 1986 .

[71]  G. B. Stringfellow,et al.  Increase in luminescence efficiency of AlxGa1−xAs grown by organometallic VPE , 1979 .

[72]  Kohroh Kobayashi,et al.  Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band‐gap energy , 1987 .

[73]  H. M. Manasevit,et al.  High purity GaAs prepared from trimethylgallium and arsine , 1981 .

[74]  M. Okajima,et al.  Effects of Growth Parameters on Oxygen Incorporation into InGaAlP Grown by Metalorganic Chemical Vapor Deposition , 1993 .

[75]  S. Honda,et al.  Activation of Zn acceptors in AlGaInP epitaxial layers grown on misoriented substrates by metal organic chemical vapour deposition , 1992 .

[76]  G. B. Stringfellow,et al.  Effects of substrate misorientation and growth rate on ordering in GaInP , 1994 .

[77]  G. B. Stringfellow,et al.  GaInP/AlGaInP strained quantum wells grown using atmospheric pressure organometallic vapor phase epitaxy , 1991 .

[78]  R. Fletcher,et al.  High performance AlGaInP visible light‐emitting diodes , 1990 .

[79]  G. B. Stringfellow,et al.  Atomic force microscopy study of ordered GaInP , 1995 .

[80]  A. Madhukar,et al.  Adatom processes near step‐edges and evolution of long range order in semiconductor alloys grown from vapor phase , 1992 .

[81]  T. Seong,et al.  Mechanism for CuPt-type ordering in mixed III–V epitaxial layers , 1994 .

[82]  J. W. Huang,et al.  Alkoxide precursors for controlled oxygen incorporation during metalorganic vapor phase epitaxy GaAs and AlxGa1−xAs growth , 1994 .

[83]  O. Brandt,et al.  Mg diffusion during metalorganic vapor phase epitaxy of InP , 1989 .

[84]  P. A. Turner,et al.  Stability of conductor metallizations in corrosive environments , 1972 .

[85]  Toshiaki Tanaka,et al.  Effect of cap layer and cooling atmosphere on the hole concentration of p(Zn)-AlGaInP grown by organometallic vapor phase epitaxy , 1992 .

[86]  J. Curless,et al.  A MOCVD reactor safety system for a production environment , 1984 .

[87]  Kohroh Kobayashi,et al.  Room-temperature CW operation of AlGaInP double-heterostructure visible lasers , 1985 .

[88]  G. B. Stringfellow,et al.  Kinetically controlled order/disorder structure in GaInP , 1994 .

[89]  Masaki Okajima,et al.  Short-wavelength InGaAlP visible laser diodes , 1991 .

[90]  S. Pearton,et al.  Hydrogen passivation effects in InGaAlP and InGaP , 1994 .

[91]  R. J. Archer Materials for light emitting diodes , 1972 .

[92]  T. Tanahashi,et al.  Mg-doping transients during metalorgic vapor phase epitaxy of GaAs and AlGaInP , 1994 .

[93]  G. B. Stringfellow,et al.  Effect of growth rate on properties of Ga0.51In0.49P grown by organometallic vapor phase epitaxy , 1991 .

[94]  K. Heime,et al.  Safety aspects of MOVPE in research and development: An example , 1988 .

[95]  D. Arent,et al.  Low‐band‐gap Ga0.5In0.5P grown on (511)B GaAs substrates , 1994 .

[96]  P. Agnello,et al.  Alkyl exchange effects between triethylindium and trimethylgallium , 1989 .

[97]  T. Kuech Metal-organic vapor phase epitaxy of compound semiconductors , 1987 .

[98]  G. Scilla,et al.  The control and modeling of doping profiles and transients in MOVPE growth , 1988 .

[99]  E. O’Reilly,et al.  High pressure determination of AlGaInP band structure , 1995 .

[100]  G. B. Stringfellow The role of impurities in III/V semiconductors grown by organometallic vapor phase epitaxy , 1986 .

[101]  G. R. Antell,et al.  Passivation of zinc acceptors in InP by atomic hydrogen coming from arsine during metalorganic vapor phase epitaxy , 1988 .