UC Merced Frontiers of Biogeography

are only partially shared by Ceiba . Abstract The Neotropics is the most species-rich area in the world, and the mechanisms that generated and maintain its biodiversity are still debated. This paper contributes to the debate by investigating the evolutionary and biogeographic history of the genus Ceiba Mill. (Malvaceae, Bombacoideae). Ceiba comprises 18 mostly Neotropical species, largely endemic to two major biomes, seasonally dry tropical forests (SDTFs) and rain forests. Its species are among the most characteristic elements of Neotropical SDTF, one of the most threatened biomes in the tropics. Phylogenetic analyses of DNA sequence data (from the nuclear ribosomal internal transcribed spacers [nrITS] for 30 accessions representing 14 species of Ceiba ) recovered the genus as monophyletic. The phylogeny showed geographic and ecological structure in three main clades: (i) a rain forest lineage of nine accessions of C. pentandra sister to the remaining species; (ii) a highly supported clade composed of C. schottii and C. aesculifolia from Central American and Mexican SDTF, plus two accessions of C. samauma from semi-humid, inter Andean valleys in Peru; and (iii) a highly supported South American SDTF clade including 10 species showing little sequence variation. Within this South American SDTF clade, no species represented by multiple accessions were resolved as monophyletic. We demonstrate that the patterns of species age, monophyly, and geographic structure previously reported for SDTF species within the Leguminosae family are not shared by Ceiba , suggesting that further phylogenetic studies of unrelated

[1]  P. Raven,et al.  The distribution of biodiversity richness in the tropics , 2020, Science Advances.

[2]  Matthew W. Pennell,et al.  Extant timetrees are consistent with a myriad of diversification histories , 2020, Nature.

[3]  A. Antonelli,et al.  Transitions between biomes are common and directional in Bombacoideae (Malvaceae) , 2020, Journal of Biogeography.

[4]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[5]  R. Pennington,et al.  History and Geography of Neotropical Tree Diversity , 2019, Annual Review of Ecology, Evolution, and Systematics.

[6]  T. Baker,et al.  Freezing and water availability structure the evolutionary diversity of trees across the Americas , 2019, Science Advances.

[7]  Michelle L. Hart,et al.  Comparative phylogeography of five widespread tree species: Insights into the history of western Amazonia , 2019, Ecology and evolution.

[8]  M. Cardillo,et al.  Reconstructing the Geography of Speciation from Contemporary Biodiversity Data , 2019, The American Naturalist.

[9]  C. Hughes,et al.  Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). , 2019, The New phytologist.

[10]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[11]  C. C. Ribas,et al.  Towards integrative taxonomy in Neotropical botany: disentangling the Pagamea guianensis species complex (Rubiaceae) , 2018, Botanical Journal of the Linnean Society.

[12]  F. Forest,et al.  Is Amazonia a 'museum' for Neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). , 2018, Molecular phylogenetics and evolution.

[13]  R. Pennington,et al.  DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveals Geographically Localized Clades Here Ranked as Species , 2018, Systematic Botany.

[14]  T. Baker,et al.  Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America , 2018, Global Ecology and Biogeography.

[15]  Philip B. Holden,et al.  Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves , 2018, Science.

[16]  Marilyn Vásquez‐Cruz,et al.  Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism , 2018 .

[17]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[18]  W. Eiserhardt,et al.  Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. , 2017, The New phytologist.

[19]  M. Bueno,et al.  Lack of floristic identity in campos rupestres—A hyperdiverse mosaic of rocky montane savannas in South America , 2017 .

[20]  R. Bouckaert,et al.  Model Selection and Parameter Inference in Phylogenetics Using Nested Sampling , 2017, Systematic biology.

[21]  P. Coley,et al.  Dispersal assembly of rain forest tree communities across the Amazon basin , 2017, Proceedings of the National Academy of Sciences.

[22]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[23]  W. Alverson,et al.  Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses. , 2016, Molecular phylogenetics and evolution.

[24]  C. Schaefer,et al.  Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority , 2016, Plant and Soil.

[25]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[26]  R. Pennington,et al.  The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. , 2016, The New phytologist.

[27]  J. J. Clarkson,et al.  Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. , 2015, The New phytologist.

[28]  M. Donoghue,et al.  Confluence, synnovation, and depauperons in plant diversification. , 2015, The New phytologist.

[29]  C. Marshall,et al.  Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating , 2015, BMC Evolutionary Biology.

[30]  H. Linder,et al.  Species delimitation and relationships: The dance of the seven veils , 2015 .

[31]  C. G. Willis,et al.  The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico , 2014, Front. Genet..

[32]  L. Gautier,et al.  Patterns of diversification amongst tropical regions compared: a case study in Sapotaceae , 2014, Front. Genet..

[33]  D. Daly,et al.  To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae) , 2014, Front. Genet..

[34]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[35]  Curtis W. Burney,et al.  The drivers of tropical speciation , 2014 .

[36]  L. P. Queiroz,et al.  A taxonomic revision of the South American papilionoid genus Luetzelburgia (Fabaceae) , 2014 .

[37]  Monica F. Poelchau,et al.  Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species , 2014, Journal of biogeography.

[38]  J. Terborgh,et al.  Fast demographic traits promote high diversification rates of Amazonian trees , 2014, Ecology letters.

[39]  J. Doucet,et al.  Speciation slowing down in widespread and long-living tree taxa: insights from the tropical timber tree genus Milicia (Moraceae) , 2014, Heredity.

[40]  F. Forest,et al.  Phylogeny of Calliandra (Leguminosae: Mimosoideae) based on nuclear and plastid molecular markers , 2013 .

[41]  J. Terborgh,et al.  Hyperdominance in the Amazonian Tree Flora , 2013, Science.

[42]  C. Moreau,et al.  TESTING THE MUSEUM VERSUS CRADLE TROPICAL BIOLOGICAL DIVERSITY HYPOTHESIS: PHYLOGENY, DIVERSIFICATION, AND ANCESTRAL BIOGEOGRAPHIC RANGE EVOLUTION OF THE ANTS , 2013, Evolution; international journal of organic evolution.

[43]  S. Lewis,et al.  Neogene origins and implied warmth tolerance of Amazon tree species , 2013, Ecology and evolution.

[44]  S. Renner,et al.  A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. , 2012, Molecular phylogenetics and evolution.

[45]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[46]  R. Pennington,et al.  Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests , 2012 .

[47]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[48]  D. Baum,et al.  Phylogenetic Analyses of Eriotheca and Related Genera (Bombacoideae, Malvaceae) , 2011 .

[49]  F. Forest,et al.  Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms , 2011, BMC Biology.

[50]  A. Antonelli,et al.  Why are there so many plant species in the Neotropics , 2011 .

[51]  R. Pennington,et al.  Poissonia eriantha (Leguminosae) from Cuzco, Peru: An Overlooked Species Underscores a Pattern of Narrow Endemism Common to Seasonally Dry Neotropical Vegetation , 2011 .

[52]  L. P. Queiroz,et al.  Coursetia (Leguminosae) from Eastern Brazil: Nuclear Ribosomal and Chloroplast DNA Sequence Analysis Reveal the Monophyly of Three Caatinga-Inhabiting Species , 2011 .

[53]  J. Felfili,et al.  Variações temporais na comunidade arbórea de uma floresta decidual sobre afloramentos calcários no Brasil Central: composição, estrutura e diversidade florística , 2011 .

[54]  Marcel O. Tanaka,et al.  Aspectos estruturais da comunidade arbórea em remanescentes de floresta estacional decidual, em Corumbá, MS, Brasil , 2010 .

[55]  Andy Purvis,et al.  Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits , 2010, Conservation biology : the journal of the Society for Conservation Biology.

[56]  R. Pennington,et al.  Contrasting plant diversification histories within the Andean biodiversity hotspot , 2010, Proceedings of the National Academy of Sciences.

[57]  C. Cunningham,et al.  Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter? , 2010 .

[58]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[59]  R. Pennington,et al.  Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire , 2009, Proceedings of the National Academy of Sciences.

[60]  C. Ballesteros,et al.  ESTRUCTURA POBLACIONAL Y ETOLOGÍA DE Bradypus variegatus EN FRAGMENTO DE BOSQUE SECO TROPICAL, CÓRDOBA - COLOMBIA , 2009 .

[61]  Maria A. Gandolfo,et al.  Phylogenetic biome conservatism on a global scale , 2009, Nature.

[62]  R. Pennington,et al.  Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests , 2009 .

[63]  Hoorn,et al.  Amazonia: Landscape and Species Evolution (A look into the past) || Molecular Studies and Phylogeography of Amazonian Tetrapods and their Relation to Geological and Climatic Models , 2009 .

[64]  C. Graham,et al.  Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. , 2008, Ecology letters.

[65]  L. P. Queiroz,et al.  Ceiba rubriflora (Malvaceae: Bombacoideae), a new species from Bahia, Brazil , 2008, Kew Bulletin.

[66]  Michael J. Donoghue,et al.  A phylogenetic perspective on the distribution of plant diversity , 2008, Proceedings of the National Academy of Sciences.

[67]  Bryan C. Carstens,et al.  Delimiting species without monophyletic gene trees. , 2007, Systematic biology.

[68]  J. Rosselló,et al.  Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. , 2007, Molecular phylogenetics and evolution.

[69]  V. Savolainen,et al.  A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. , 2007, Molecular phylogenetics and evolution.

[70]  E. Bermingham,et al.  Extreme long‐distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics , 2007, Molecular ecology.

[71]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[72]  J. Richardson,et al.  Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. , 2006, The New phytologist.

[73]  Tony O’Hagan Bayes factors , 2006 .

[74]  Brian D. Farrell,et al.  Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. Lavin Floristic and Geographical Stability of Discontinuous Seasonally Dry Tropical Forests Explains Patterns of Plant Phylogeny and Endemism , 2006 .

[76]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[77]  R. DeFries,et al.  A global overview of the conservation status of tropical dry forests , 2006 .

[78]  S. Renner Relaxed molecular clocks for dating historical plant dispersal events. , 2005, Trends in plant science.

[79]  R. Linares‐Palomino,et al.  Tree community patterns in seasonally dry tropical forests in the Cerros de Amotape Cordillera, Tumbes, Peru , 2005 .

[80]  M. Donoghue,et al.  Historical biogeography, ecology and species richness. , 2004, Trends in ecology & evolution.

[81]  Kirk R. Johnson,et al.  South American palaeobotany and the origins of neotropical rainforests. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[82]  R. Pennington,et al.  Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  C. Pendry,et al.  Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[84]  L. Silva,et al.  Comunidade arbórea de uma floresta estacional decídua sobre afloramento calcário na Bacia do rio Paraná , 2004 .

[85]  L. Silva,et al.  Composição e estrutura da comunidade arbórea de uma floresta estacional decidual sobre afloramento calcário no Brasil central , 2004 .

[86]  P. E. Gibbs,et al.  A taxonomic revision of the genus Ceiba Mill (Bombacaceae) , 2003 .

[87]  J. Wendel,et al.  Ribosomal ITS sequences and plant phylogenetic inference. , 2003, Molecular phylogenetics and evolution.

[88]  S. Harris,et al.  Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. , 2003, Molecular phylogenetics and evolution.

[89]  T. Garland,et al.  TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE , 2003, Evolution; international journal of organic evolution.

[90]  M. Pagel,et al.  Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence , 2002, The American Naturalist.

[91]  R. Hudson,et al.  MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT , 2002, Evolution; international journal of organic evolution.

[92]  P. Hollingsworth,et al.  Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees , 2001, Science.

[93]  J. Wendel,et al.  Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. , 1998, Systematic biology.

[94]  E. Buckler,et al.  The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. , 1997, Genetics.

[95]  E. Fischer The role of plumes in Eriotheca pentaphylla (Bombacaceae) seed survival in south-eastern Brazil , 1997, Journal of Tropical Ecology.

[96]  D. Skinner,et al.  Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA , 1994, Theoretical and Applied Genetics.

[97]  K. Kubitzki,et al.  Seed dispersal in flood plain forests of Amazonia , 1994 .

[98]  L. Rieseberg,et al.  Are many plant species paraphyletic , 1994 .

[99]  M. Salard-Cheboldaeff,et al.  Palynologie des bassins de Gandarela et Fonseca (eocene de l'etat de Minas Gerais, Bresil) , 1981 .

[100]  G. Ledyard Stebbins,et al.  Flowering Plants: Evolution Above the Species Level , 1975 .

[101]  A. Robyns Essai de monographie du genre Bombax s.l. (Bombacaceae) (Suite) , 1963 .

[102]  Oscar M. Vargas,et al.  Diversification History of Neotropical Lecythidaceae, an Ecologically Dominant Tree Family of Amazon Rain Forest , 2020 .

[103]  P. Inglis,et al.  A molecular phylogeny of the genus Diplusodon (Lythraceae), endemic to the campos rupestres and cerrados of South America , 2018 .

[104]  L. P. Queiroz,et al.  Diversity and Evolution of Flowering Plants of the Caatinga Domain , 2017 .

[105]  A. Antonelli,et al.  Neotropical Plant Evolution: Assembling the Big Picture , 2013 .

[106]  J. Montero,et al.  Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). , 2012, The New phytologist.

[107]  S. T. ´. E. G. Uindon,et al.  New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML , 2010 .

[108]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[109]  ohn,et al.  Delimiting Species Using DNA and Morphological Variation and Discordant Species Limits in Spiny Lizards ( Sceloporus ) , 2002 .

[110]  M. Sanderson Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. , 2002, Molecular biology and evolution.

[111]  P. G. Murphy,et al.  Ecology of Tropical Dry Forest , 1986 .

[112]  H. Sioli,et al.  The Amazon : limnology and landscape ecology of a mighty tropical river and its basin , 1984 .