Radar measurement noise variance estimation with several targets of opportunity

A number of methods exist to track a target's uncertain motion through space using inherently inaccurate sensor measurements. A powerful method of adaptive estimation is the interacting multiple model (IMM) estimator. In order to carry out state estimation from the noisy measurements of a sensor, however, the filter should have knowledge of the statistical characteristics of the noise associated with that sensor. The statistical characteristics (accuracies) of real sensors, however, are not always available, in particular for legacy sensors. A method is presented of determining the measurement noise variances of a sensor, assumed to be constant, by using multiple IMM estimators while tracking targets whose motion is not known-targets of opportunity. Combining techniques outlined in (Bar-Shalom et al., 2001) and (Gauvrit, 1984), the likelihood functions are obtained for a number of IMM estimators, each with different assumptions on the measurement noise variances. Then a search is carried out over a varying grid of IMMs to bracket the variances of the sensor measurement noises. The end result consists of estimates of the measurement noise variances of the sensor in question.