The Correlation Fractal Dimension Of Complex Networks

The fractality of complex networks is studied by estimating the correlation dimensions of the networks. Comparing with the previous algorithms of estimating the box dimension, our algorithm achieves a significant reduction in time complexity. For four benchmark cases tested, that is, the Escherichia coli (E. Coli) metabolic network, the Homo sapiens protein interaction network (H. Sapiens PIN), the Saccharomyces cerevisiae protein interaction network (S. Cerevisiae PIN) and the World Wide Web (WWW), experiments are provided to demonstrate the validity of our algorithm.

[1]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[2]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[3]  F Kawasaki,et al.  Reciprocal relation between the fractal and the small-world properties of complex networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[5]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[6]  S. Strogatz Exploring complex networks , 2001, Nature.

[7]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[8]  Zengru Di,et al.  Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Ioannis Xenarios,et al.  DIP: the Database of Interacting Proteins , 2000, Nucleic Acids Res..

[10]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[11]  S. Havlin,et al.  How to calculate the fractal dimension of a complex network: the box covering algorithm , 2007, cond-mat/0701216.

[12]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[13]  S. Havlin,et al.  Scaling theory of transport in complex biological networks , 2007, Proceedings of the National Academy of Sciences.

[14]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[15]  K-I Goh,et al.  Skeleton and fractal scaling in complex networks. , 2006, Physical review letters.

[16]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[17]  Hans J. Herrmann,et al.  Optimal box-covering algorithm for fractal dimension of complex networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[19]  J S Kim,et al.  Fractality in complex networks: critical and supercritical skeletons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.

[21]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.