Fundamental Study Behavioural di#erential equations: a coinductive calculus of streams, automata, andpower series

We present a theory of streams (in2nite sequences), automata andlanguages, andformal power series, in terms of the notions of homomorphism andbisimulation, which are the cornerstones of the theory of (universal) coalgebra. This coalgebraic perspective leads to a uni2ed theory, in

[1]  M. Douglas McIlroy,et al.  Power series, power serious , 1999, Journal of Functional Programming.

[2]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1999, Theor. Comput. Sci..

[3]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[4]  Abraham Ginzburg,et al.  Algebraic theory of automata , 1968 .

[5]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[6]  James Worrell,et al.  Coinduction for recursive data types: partial orders, metric spaces and Omega-categories , 2000, CMCS.

[7]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[8]  Martín Hötzel Escardó,et al.  Calculus in coinductive form , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[9]  Jan Rutten Coinductive Counting: Bisimulation in Enumerative Combinatorics , 2002, CMCS.

[10]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[11]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[12]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[13]  Jan J. M. M. Rutten Elements of Stream Calculus (An Extensive Exercise in Coinduction) , 2001, MFPS.

[14]  Joseph A. Goguen,et al.  Realization is universal , 1972, Mathematical systems theory.

[15]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[16]  H. Swinnerton-Dyer Publications of the Newton Institute , 1993 .