Edge-signed graphs with smallest eigenvalue greater than -2

We give a structural classification of edge-signed graphs with smallest eigenvalue greater than -2. We prove a conjecture of Hoffman about the smallest eigenvalue of the line graph of a tree that was stated in the 1970s. Furthermore, we prove a more general result extending Hoffman's original statement to all edge-signed graphs with smallest eigenvalue greater than -2. Our results give a classification of the special graphs of fat Hoffman graphs with smallest eigenvalue greater than -3.

[1]  Akihiro Munemasa,et al.  Fat Hoffman graphs with smallest eigenvalue at least $-1-τ$ , 2011, Ars Math. Contemp..

[2]  Michael Doob,et al.  An interrelation between line graphs, eigenvalues, and matroids , 1973 .

[3]  Anne-Sophie Gleitz,et al.  On the KNS Conjecture in Type E , 2013, 1307.2738.

[4]  Toru Ishihara Signed Graphs Associated with the Lattice A_n , 2003 .

[5]  A. Hoffman On graphs whose least eigenvalue exceeds − 1 − √2 , 1977 .

[6]  G. R. Vijayakumar Signed Graphs Represented by D∞ , 1987, Eur. J. Comb..

[7]  Akihiro Munemasa,et al.  Fat Hoffman graphs with smallest eigenvalue greater than -3 , 2012, Discret. Appl. Math..

[8]  James McKee,et al.  Integer symmetric matrices having all their eigenvalues in the interval [−2,2] , 2007, 0705.3599.

[9]  A. Neumaier,et al.  On graphs whose smallest eigenvalue is at least − 1 − √2 , 1995 .

[10]  Dragoš Cvetković,et al.  Spectral Generalizations of Line Graphs: Introduction , 2004 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  A. Neumaier,et al.  Exceptional graphs with smallest eigenvalue -2 and related problems , 1992 .

[13]  J. Seidel,et al.  Line graphs, root systems, and elliptic geometry , 1976 .

[14]  Michael Doob,et al.  On spectral characterizations and embeddings of graphs , 1979 .

[15]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[16]  Dragoš Cvetković,et al.  Spectral Generalizations of Line Graphs: Preface , 2004 .

[17]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[18]  Akihiro Munemasa,et al.  On fat Hoffman graphs with smallest eigenvalue at least -3 , 2011, Ars Math. Contemp..