Edge-signed graphs with smallest eigenvalue greater than -2
暂无分享,去创建一个
Akihiro Munemasa | Jacobus H. Koolen | Yoshio Sano | Tetsuji Taniguchi | Gary R. W. Greaves | J. Koolen | A. Munemasa | Y. Sano | T. Taniguchi
[1] Akihiro Munemasa,et al. Fat Hoffman graphs with smallest eigenvalue at least $-1-τ$ , 2011, Ars Math. Contemp..
[2] Michael Doob,et al. An interrelation between line graphs, eigenvalues, and matroids , 1973 .
[3] Anne-Sophie Gleitz,et al. On the KNS Conjecture in Type E , 2013, 1307.2738.
[4] Toru Ishihara. Signed Graphs Associated with the Lattice A_n , 2003 .
[5] A. Hoffman. On graphs whose least eigenvalue exceeds − 1 − √2 , 1977 .
[6] G. R. Vijayakumar. Signed Graphs Represented by D∞ , 1987, Eur. J. Comb..
[7] Akihiro Munemasa,et al. Fat Hoffman graphs with smallest eigenvalue greater than -3 , 2012, Discret. Appl. Math..
[8] James McKee,et al. Integer symmetric matrices having all their eigenvalues in the interval [−2,2] , 2007, 0705.3599.
[9] A. Neumaier,et al. On graphs whose smallest eigenvalue is at least − 1 − √2 , 1995 .
[10] Dragoš Cvetković,et al. Spectral Generalizations of Line Graphs: Introduction , 2004 .
[11] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[12] A. Neumaier,et al. Exceptional graphs with smallest eigenvalue -2 and related problems , 1992 .
[13] J. Seidel,et al. Line graphs, root systems, and elliptic geometry , 1976 .
[14] Michael Doob,et al. On spectral characterizations and embeddings of graphs , 1979 .
[15] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[16] Dragoš Cvetković,et al. Spectral Generalizations of Line Graphs: Preface , 2004 .
[17] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[18] Akihiro Munemasa,et al. On fat Hoffman graphs with smallest eigenvalue at least -3 , 2011, Ars Math. Contemp..