The "inverse problem" solved for a three-dimensional model of the cochlea. III. Brushing-up the solution method.
暂无分享,去创建一个
[1] M. Liberman,et al. Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections , 1997 .
[2] L. Robles,et al. Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.
[3] M. Sondhi,et al. Cochlear macromechanics: time domain solutions. , 1979, The Journal of the Acoustical Society of America.
[4] R. Patuzzi,et al. The influence of Mossbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane , 1983, Hearing Research.
[5] E. de Boer,et al. Matching impedance of a nonuniform transmission line: application to cochlear modeling. , 1987, The Journal of the Acoustical Society of America.
[6] S. Neely,et al. A model for active elements in cochlear biomechanics. , 1986, The Journal of the Acoustical Society of America.
[7] Egbert de Boer. The ‘‘inverse problem’’ solved for a three‐dimensional model of the cochlea. I. Analysis , 1995 .
[8] J B Allen,et al. Two-dimensional cochlear fluid model: new results. , 1977, The Journal of the Acoustical Society of America.
[9] Egbert de Boer. THE INVERSE PROBLEM SOLVED FOR A THREE-DIMENSIONAL MODEL OF THE COCHLEA.II: APPLICATION TO EXPERIMENTAL DATA SETS , 1995 .
[10] L. Robles,et al. Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.
[11] D. D. Greenwood. A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.
[12] Egbert de Boera. UvA-DARE ( Digital Academic Repository ) A method for forward and inverse solutions of a three-dimensional model of the cochlea ( letter ) , 1998 .
[13] E. De Boer,et al. Short waves in three-dimensional cochlea models: Solution for a ‘block’ model , 1981, Hearing Research.
[14] James Lighthill,et al. Energy flow in the cochlea , 1981, Journal of Fluid Mechanics.
[15] W. Siebert,et al. Ranke revisited--a simple short-wave cochlear model. , 1973, The Journal of the Acoustical Society of America.
[16] A. Nuttall,et al. Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig. , 1996, The Journal of the Acoustical Society of America.
[17] E. Boer. Classical and non-classical models of the cochlea. , 1997, The Journal of the Acoustical Society of America.
[18] E. de Boer. No sharpening? A challenge for cochlear mechanics , 1983 .
[19] M. Sondhi,et al. Method for computing motion in a two-dimensional cochlear model. , 1978, The Journal of the Acoustical Society of America.
[20] F. Mammano,et al. Biophysics of the cochlea: linear approximation. , 1993, The Journal of the Acoustical Society of America.
[21] E. de Boer,et al. Solving cochlear mechanics problems with higher‐order differential equations , 1982 .
[22] G. Zweig,et al. A symmetry suppresses the cochlear catastrophe. , 1991, The Journal of the Acoustical Society of America.
[23] E de Boer,et al. The mechanical waveform of the basilar membrane. I. Frequency modulations ("glides") in impulse responses and cross-correlation functions. , 1997, The Journal of the Acoustical Society of America.