Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries

Sodium ion batteries are an attractive alternative to lithium ion batteries that alleviate problems with lithium availability and cost. Despite several studies of cathode materials for sodium ion batteries involving layered oxide materials, there are few low-voltage metal oxide anodes capable of operating sodium ion reversibly at room temperature. We have synthesized amorphous titanium dioxide nanotube (TiO2NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium ion batteries. We find that only amorphous large diameter nanotubes (>80 nm I.D.) can support electrochemical cycling with sodium ions. These electrodes maximize their capacity in operando and reach reversible capacity of 150 mAh/g in 15 cycles. We also demonstrate for the first time a full cell all-oxide Na ion battery using TiO2NT anode coupled to a Na1.0Li0.2Ni0.25Mn0.75Oδ cathode at room temperature exhibiting good rate capability.

[1]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[2]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[3]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[4]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[5]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[6]  J. Rehr,et al.  TI K-EDGE XANES STUDIES OF TI COORDINATION AND DISORDER IN OXIDE COMPOUNDS: COMPARISON BETWEEN THEORY AND EXPERIMENT , 1997 .

[7]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[8]  Seth B Darling,et al.  Improved hybrid solar cells via in situ UV polymerization. , 2009, Small.

[9]  Linda F. Nazar,et al.  Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)† , 2010 .

[10]  Barry Lai,et al.  A high-performance nanobio photocatalyst for targeted brain cancer therapy. , 2009, Nano letters.

[11]  Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .

[12]  P. Heitjans,et al.  Ion transport and diffusion in nanocrystalline and glassy ceramics , 2008 .

[13]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[14]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems , 1994 .

[15]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[16]  Jörg Maser,et al.  Biology of TiO2–oligonucleotide nanocomposites , 2003, Nature materials.

[17]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[18]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[19]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[20]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[21]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[22]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[23]  J-M Tarascon,et al.  Key challenges in future Li-battery research , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[25]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[26]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[27]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[28]  J. Barker,et al.  Electrochemical Properties of Beta- LiVOPO4 Prepared by Carbothermal Reduction , 2004 .

[29]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .