From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations.

Coarse-grained molecular dynamics provides a means for simulating the assembly and the interactions of membrane protein/lipid complexes at a reduced level of representation, allowing longer and larger simulations. We describe a fragment-based protocol for converting membrane simulation systems, comprising a membrane protein embedded in a phospholipid bilayer, from coarse-grained to atomistic resolution, for further refinement and analysis via atomistic simulations. Overall, this provides a method for generating an accurate and well equilibrated membrane protein/lipid complex. We exemplify the protocol using the acid-sensing/amiloride-sensitive ion channel protein (ASIC) channel protein, a trimeric integral membrane protein. The method is further evaluated using a test set of 10 different membrane proteins of differing size and complexity. Simulations are assessed in terms of protein conformational drift, lipid/protein interactions, and lipid dynamics.

[1]  Toby W Allen,et al.  Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. , 2008, The journal of physical chemistry. B.

[2]  J. Killian,et al.  How proteins adapt to a membrane-water interface. , 2000, Trends in biochemical sciences.

[3]  D. Doyle,et al.  Transmembrane helix prediction: a comparative evaluation and analysis. , 2005, Protein engineering, design & selection : PEDS.

[4]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[5]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[6]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[7]  Jakob P Ulmschneider,et al.  A generalized born implicit-membrane representation compared to experimental insertion free energies. , 2007, Biophysical journal.

[8]  Berend Smit,et al.  Molecular simulations of lipid-mediated protein-protein interactions. , 2008, Biophysical journal.

[9]  Timothy S. Carpenter,et al.  Self-assembly of a simple membrane protein: coarse-grained molecular dynamics simulations of the influenza M2 channel. , 2008, Biophysical journal.

[10]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[11]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[12]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[13]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[14]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[15]  Martin B Ulmschneider,et al.  Properties of integral membrane protein structures: Derivation of an implicit membrane potential , 2005, Proteins.

[16]  Anne Mulichak,et al.  Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase , 2006, Proceedings of the National Academy of Sciences.

[17]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[18]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[19]  Rob Horsefield,et al.  High-resolution x-ray structure of human aquaporin 5 , 2008, Proceedings of the National Academy of Sciences.

[20]  G. Terstappen,et al.  In silico research in drug discovery. , 2001, Trends in pharmacological sciences.

[21]  U. Schmidt,et al.  Hydrophobic mismatch-induced clustering as a primer for protein sorting in the secretory pathway. , 2010, Biophysical chemistry.

[22]  B. Smit,et al.  Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions. , 2010, Biophysical journal.

[23]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[24]  Syma Khalid,et al.  Coarse-grained MD simulations of membrane protein-bilayer self-assembly. , 2008, Structure.

[25]  Andrei L Lomize,et al.  Positioning of proteins in membranes: A computational approach , 2006, Protein science : a publication of the Protein Society.

[26]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[27]  Jonathan W Essex,et al.  Permeability of small molecules through a lipid bilayer: a multiscale simulation study. , 2009, The journal of physical chemistry. B.

[28]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[29]  Mark S. P. Sansom,et al.  PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations , 2009, Biochemistry.

[30]  Andrzej J. Rzepiela,et al.  Reconstruction of atomistic details from coarse‐grained structures , 2010, J. Comput. Chem..

[31]  Paola Storici,et al.  Crystal structure of osmoporin OmpC from E. coli at 2.0 A. , 2006, Journal of molecular biology.

[32]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[33]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[34]  Jonathan W. Essex,et al.  Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics† , 2010 .

[35]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[36]  S. White,et al.  Biophysical dissection of membrane proteins , 2009, Nature.

[37]  J. East,et al.  Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: studies with the mechanosensitive channel MscL. , 2005, Biochemistry.

[38]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[39]  R. Jernigan,et al.  Anisotropy of fluctuation dynamics of proteins with an elastic network model. , 2001, Biophysical journal.

[40]  Gernot Guigas,et al.  Cluster formation of transmembrane proteins due to hydrophobic mismatching. , 2008, Physical review letters.

[41]  E. Tajkhorshid,et al.  Potential cation and H+ binding sites in acid sensing ion channel-1. , 2008, Biophysical journal.

[42]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[43]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[44]  Michael Feig,et al.  Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model. , 2006, The journal of physical chemistry. B.

[45]  Thomas Walz,et al.  Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals , 2010, The EMBO journal.

[46]  M. Feig,et al.  Effect of membrane thickness on conformational sampling of phospholamban from computer simulations. , 2010, Biophysical journal.

[47]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[48]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[49]  M. Sansom,et al.  Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. , 2008, Biochemistry.

[50]  D. Marsh,et al.  Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. , 2008, Biochemistry.

[51]  Gregory A Voth,et al.  Efficient, Regularized, and Scalable Algorithms for Multiscale Coarse-Graining. , 2010, Journal of chemical theory and computation.

[52]  Jeffrey Skolnick,et al.  Fast procedure for reconstruction of full‐atom protein models from reduced representations , 2008, J. Comput. Chem..

[53]  T. Schulz-Gasch,et al.  Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase , 2004, Nature.

[54]  I. Collinson,et al.  The action of cardiolipin on the bacterial translocon , 2010, Proceedings of the National Academy of Sciences.

[55]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[56]  Birgit Schiøtt,et al.  Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. , 2008, Biophysical journal.

[57]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[58]  Eric Gouaux,et al.  A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation , 2008, Science.

[59]  Frederic A. Fellouse,et al.  Crystal structure of full-length KcsA in its closed conformation , 2009, Proceedings of the National Academy of Sciences.

[60]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[61]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[62]  Oliver Beckstein,et al.  Lipidbook: A Public Repository for Force-Field Parameters Used in Membrane Simulations , 2010, The Journal of Membrane Biology.

[63]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[64]  Perttu S. Niemelä,et al.  Membrane proteins diffuse as dynamic complexes with lipids. , 2010, Journal of the American Chemical Society.

[65]  Younes Mokrab,et al.  CGDB: A database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations , 2008, Molecular membrane biology.

[66]  Qiang Shi,et al.  Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. , 2006, The journal of physical chemistry. B.