Shake table tests on prestressed concrete frames

Results from small scale models of prestressed concrete frames, tested by a shake table simulating earthquake forces are presented. The primary curves (horizontal force-displacement relationships) and the hysteretic loops are determined experimentally. Concrete strength is approximately between 32 and 84 MPa, and two types of effective prestresses are used, namely, 40 and 80 percent of the yielding stress of the prestressing bars. It is found that the effects of concrete strength and effective prestress on the ductility are significant because the ductility increases with increasing concrete strength and with decreasing effective prestress, and the prestressed concrete frames may have at least a ductility factor of 8.0.RésuméLes résultats des modèles à échelle réduite des cadres en béton précontraints, soumis à des essais à partir d'une table vibrante capable de simuler les forces d'un tremblement de terre, sont présentés ci-après. Les courbes primaires (relations force-déplacements horizontales) ainsi que les boucles d'hystérésis sont alors déterminées d'une manière expérimentale. La résistance du béton se situe approximativement entre 32 et 84 MPa, et deux types de précontraintes effectives sont utilisés, à savoir 40% et 80% de la contrainte limite des armatures précontraintes. Il s'est révélé que les effets de la résistance du béton et de la précontrainte effective sur la ductilité sont importants puisque la ductilité augmente avec un accroissement de la résistance du béton ainsi qu'avec une baisse de la précontrainte effective; enfin, les cadres en béton précontraints pourraient présenter un facteur de ductilité d'au moins 8,0.

[1]  Serafim G. Arzoumanidis,et al.  Analysis of damaged concrete frames for cyclic loads , 1983 .

[2]  Jack P. Moehle,et al.  Ductility and Detailing Requirements of Bearing Wall Buildings , 1992 .

[3]  R. Clough Effect of stiffness degradation on earthquake ductility requirements , 1966 .

[4]  M. Z. Cohn,et al.  Inelastic Behavior of Continuous Prestressed Concrete Beams , 1983 .

[5]  T. Y. Lin,et al.  Strength of Continuous Prestressed Concrete Beams Under Static and Repeated Loads , 1955 .

[6]  Bijan O. Aalami,et al.  LOAD BALANCING: A COMPREHENSIVE SOLUTION TO POST-TENSIONING , 1990 .

[7]  Ton-Lo Wang,et al.  Dynamic Behavior of Slant‐Legged Rigid‐Frame Highway Bridge , 1994 .

[8]  K. Suenaga,et al.  Development and Utilization of High Performance Concrete employed in the Akashi Kaikyo bridge , 1993 .

[9]  Mo-Lin Ge Dynamic behavior of concrete structures , 1994 .

[10]  T. Takeda,et al.  Reinforced Concrete response to simulated earthquakes , 1970 .

[11]  Yi-Lung Mo Zur Ermittlung der Momentenumlagerung in Spannbeton-Tragwerken. , 1993 .

[12]  Young-Jin Kang,et al.  Nonlinear Analysis of Prestressed Concrete Frames , 1980 .

[13]  M. Priestley,et al.  Ductility of Square-Confined Concrete Columns , 1982 .

[14]  W. Corley Rotational Capacity of Reinforced Concrete Beams , 1966 .

[15]  Alan H. Mattock,et al.  COMPARATIVE STUDY OF PRESTRESSED CONCRETE BEAMS, WITH AND WITHOUT BOND (PART 1) , 1971 .

[16]  Michael G. Oliva,et al.  Biaxial Seismic Response of R/C Frames , 1987 .