Sol–gel derived sulfonated-silica/Nafion® composite membrane for direct methanol fuel cell

Abstract Sulfonated-silica/Nafion® composite membranes were prepared in a sol–gel reaction of (3-Mercaptopropyl)trimethoxysilane (SH-silane) followed by solution casting, and then oxidated using 10 wt% H2O2 solution. The chemical and physical properties of the composite membranes were characterized by using FT-IR, XPS, 29Si NMR and SEM analyses. Experimental results indicated that the optimum oxidation condition was 60 °C for 1 h. The performance of the silica–SO3H/Nafion® composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The silica–SO3H/Nafion® composite membranes have a higher selectivity (C/P ratio = 26,653) than that of pristine Nafion® (22,795), perhaps because of their higher proton conductivity and lower methanol permeability. The composite membrane with 0.6 wt% silica–SO3H/Nafion® performed better than pristine Nafion®. The current densities were measured as 62.5 and 70 mA cm−2 at a potential of 0.2 V with a composite membrane that contained 0 and 0.6 wt% silica–SO3H, respectively. The cell performance of the DMFC was improved by introducing silica–SO3H. The composite membrane with 0.6 wt% of silica–SO3H yielded the maximum power density of 15.18 mW cm−2. The composite membranes are suitable for DMFC applications with high selectivity.

[1]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[2]  D. Peck,et al.  Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell , 2002 .

[3]  K. Mauritz,et al.  Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions : Characterization of fundamental properties , 1998 .

[4]  R. Jerome,et al.  Impact of acid containing montmorillonite on the properties of Nafion® membranes , 2005 .

[5]  Serguei N. Lvov,et al.  Nafion ∕ TiO2 Proton Conductive Composite Membranes for PEMFCs Operating at Elevated Temperature and Reduced Relative Humidity , 2005 .

[6]  T. Zhao,et al.  Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells , 2005 .

[7]  R. Silverstein,et al.  Spectrometric identification of organic compounds , 2013 .

[8]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability , 2001 .

[9]  Heung Yong Ha,et al.  Nafion ® -graft-polystyrene sulfonic acid membranes for direct methanol fuel cells , 2006 .

[10]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[11]  Hyuk Chang,et al.  Nanocomposite membranes of surface-sulfonated titanate and Nafion® for direct methanol fuel cells , 2006 .

[12]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[13]  T. Zhao,et al.  Diphenylsilicate-incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells , 2006 .

[14]  H. Park,et al.  Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane , 2005 .

[15]  Wei Jin,et al.  Organic silica/Nafion ® composite membrane for direct methanol fuel cells , 2006 .

[16]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[17]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .

[18]  T. Zhao,et al.  New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane , 2007 .

[19]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content , 2001 .

[20]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[21]  A. Manthiram,et al.  Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells , 2004 .

[22]  Ravindra Datta,et al.  Systematic Approach to Design Higher Temperature Composite PEMs , 2005 .

[23]  C. Ma,et al.  A novel composite membranes based on sulfonated montmorillonite modified Nafion® for DMFCs , 2007 .

[24]  James M. Fenton,et al.  Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells , 2006 .

[25]  Joseph M. Norbeck,et al.  Nafion-bifunctional silica composite proton conductive membranes , 2002 .

[26]  D. Bélanger,et al.  Characterization and transport properties of Nafion/polyaniline composite membranes. , 2005, The journal of physical chemistry. B.

[27]  Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell , 2007 .

[28]  Suzhen Ren,et al.  Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells , 2006 .

[29]  T. Zhao,et al.  A palladium-alloy deposited Nafion membrane for direct methanol fuel cells , 2003 .

[30]  Michael A. Hickner,et al.  Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications , 2003 .

[31]  H. Galiano,et al.  Nafion®/clay-SO3H membrane for proton exchange membrane fuel cell application , 2006 .

[32]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .