Planning of experiments and kinetic analysis

Abstract In this paper we are taken into account the distinct phases necessary to build a kinetic model. In particular several mistakes, that can be made during such activity, are described and analyzed.

[1]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations: multiresponse case. , 1967, Biometrika.

[2]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[3]  J. Mandler,et al.  An automated catalytic system for the sequential optimal discrimination between rival models , 1983 .

[4]  A. Wald On the Efficient Design of Statistical Investigations , 1943 .

[5]  Anthony C. Atkinson,et al.  The Design of Experiments for Parameter Estimation , 1968 .

[6]  W. G. Hunter,et al.  Design of experiments for parameter estimation in multiresponse situations , 1966 .

[7]  A. Atkinson Posterior probabilities for choosing a regression model , 1978 .

[8]  Thomas Hsiang,et al.  A practical method for discriminating among mechanistic models , 1971 .

[9]  G. Chow A comparison of the information and posterior probability criteria for model selection , 1981 .

[10]  John F. MacGregor,et al.  ASQC Chemical Division Technical Conference 1971 Prize Winning Paper Some Problems Associated with the Analysis of Multiresponse Data , 1973 .

[11]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[12]  William G. Hunter,et al.  An experimental design strategy for distinguishing among rival mechanistic models an application to the catalytic hydrogenation of propylene , 1967 .

[13]  Reiji Mezaki,et al.  Sequential discrimination and estimation procedures for rate modeling in heterogeneous catalysis , 1970 .

[14]  D. W. Bacon,et al.  Using a statistical multiresponse method of experimental design in a reaction network study , 1978 .

[15]  L. White An extension of the General Equivalence Theorem to nonlinear models , 1973 .

[16]  G. Box,et al.  A general distribution theory for a class of likelihood criteria. , 1949, Biometrika.

[17]  W. J. Hill,et al.  Designing experiments for precise estimation of all or some of the constants in a mechanistic model , 1969 .

[18]  W. J. Hill,et al.  A Joint Design Criterion for the Dual Problem of Model Discrimination and Parameter Estimation , 1968 .

[19]  Gilbert F. Froment,et al.  The Use of Sequential Discrimination in the Kinetic Study of 1-Butene Dehydrogenation , 1977 .

[20]  Duane A. Meeter,et al.  A Comparison of Two Model-Discrimination Criteria , 1970 .

[21]  George E. P. Box,et al.  Model Discrimination and Criticism with Single-Response Data , 1996 .

[22]  L. Hosten,et al.  A sequential experimental design procedure for precise parameter estimation based upon the shape of the joint confidence region , 1974 .

[23]  D. W. Bacon,et al.  Sequential statistical design strategy in an experimental kinetic study , 1972 .

[24]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[25]  G. Buzzi Ferraris,et al.  Statistical tests and confidence intervals , 2000 .

[26]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[27]  M. J. Box An experimental design criterion for precise estimation of a subset of the parameters in a nonlinear model , 1971 .

[28]  S. Ehrenfeld On the Efficiency of Experimental Designs , 1955 .

[29]  G. Elfving Optimum Allocation in Linear Regression Theory , 1952 .

[30]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations. , 1967, Biometrika.

[31]  D. F. Andrews,et al.  Sequentially designed experiments for screening out bad models with F tests , 1971 .

[32]  Warren E. Stewart,et al.  Bayesian Estimation of Common Parameters From Multiresponse Data With Missing Observations , 1981 .

[33]  Park M. Reilly,et al.  Statistical methods in model discrimination , 1970 .

[34]  George E. P. Box,et al.  The Bayesian estimation of common parameters from several responses , 1965 .

[35]  Anthony C. Atkinson,et al.  Planning experiments to detect inadequate regression models , 1972 .

[36]  Andrej Pázman,et al.  Design of Physical Experiments (Statistical Methods) , 1968, 1968.

[37]  William J. Hill,et al.  A Note on Designs for Model Discrimination: Variance Unknown Case , 1969 .

[38]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.