LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
暂无分享,去创建一个
Stefan Kurtz | David Ellinghaus | Ute Willhoeft | S. Kurtz | D. Ellinghaus | U. Willhoeft | Stefan Kurtz | David Ellinghaus | Ute Willhoeft
[1] M. Lynch,et al. De novo identification of LTR retrotransposons in eukaryotic genomes , 2007, BMC Genomics.
[2] D. Voytas,et al. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. , 1998, Genome research.
[3] Srinivas Aluru,et al. Efficient algorithms and software for detection of full-length LTR retrotransposons , 2006, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).
[4] Zhao Xu,et al. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..
[5] E. Ganko,et al. Retrotransposon-gene associations are widespread among D. melanogaster populations. , 2004, Molecular biology and evolution.
[6] Emmanuelle Lerat,et al. Sequence divergence within transposable element families in the Drosophila melanogaster genome. , 2003, Genome research.
[7] J. Jurka,et al. Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[8] S. Kurtz. The Vmatch large scale sequence analysis software , 2003 .
[9] J. McDonald,et al. Long terminal repeat retrotransposons of Oryza sativa , 2002, Genome Biology.
[10] S. Eddy,et al. Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.
[11] Giorgio Valle,et al. BIOINFORMATICS ORIGINAL PAPER Sequence analysis RAP: a new computer program for de novo identification of repeated sequences in whole genomes , 2004 .
[12] J. Jurka. Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.
[13] M. Ashburner,et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.
[14] Enno Ohlebusch,et al. Replacing suffix trees with enhanced suffix arrays , 2004, J. Discrete Algorithms.
[15] Lukas Wagner,et al. A Greedy Algorithm for Aligning DNA Sequences , 2000, J. Comput. Biol..
[16] Eugene W. Myers,et al. Suffix arrays: a new method for on-line string searches , 1993, SODA '90.
[17] Colin N. Dewey,et al. Initial sequencing and comparative analysis of the mouse genome. , 2002 .
[18] J. McDonald,et al. Long terminal repeat retrotransposons of Mus musculus , 2004, Genome Biology.
[19] Esko Ukkonen,et al. Algorithms for Approximate String Matching , 1985, Inf. Control..
[20] Srinivas Aluru,et al. Efficient Algorithms and Software for Detection of Full-Length LTR Retrotransposons , 2005, CSB.
[21] J. Stoye,et al. REPuter: the manifold applications of repeat analysis on a genomic scale. , 2001, Nucleic acids research.
[22] John F. McDonald,et al. LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..
[23] N. Bowen,et al. Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses , 2006, Genome Biology.
[24] Eugene W. Myers,et al. PILER: identification and classification of genomic repeats , 2005, ISMB.
[25] J. V. Moran,et al. Initial sequencing and analysis of the human genome. , 2001, Nature.
[26] Casey M. Bergman,et al. Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..
[27] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.
[28] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome , 2001, Nature.
[29] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[30] D. Voytas,et al. The diversity of LTR retrotransposons , 2004, Genome Biology.