Further constructions of optimal variable-weight optical orthogonal codes

In this paper, several combinatorial constructions of optimal variable-weight optical orthogonal codes (OOCs) are presented. A useful recursive construction for optimal variable-weight OOCs is given as well. Based on these results, a new infinite class of optimal (v, {3,4}, 1, {3/4, 1/4})-OOCs are constructed.

[1]  J A John,et al.  Cyclic Designs , 1987 .

[2]  Marshall Hall,et al.  Combinatorial Theory: Hall/Combinatorial , 1988 .

[3]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[4]  Guu-chang Yang Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements , 1996, IEEE Trans. Commun..

[5]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[6]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[7]  G. Ge,et al.  Starters and related codes , 2000 .

[8]  G. Ge,et al.  Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.

[9]  Jianxing Yin,et al.  A General Construction for Optimal Cyclic Packing Designs , 2002, J. Comb. Theory, Ser. A.

[10]  Jingshown Wu,et al.  Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems , 2005, Journal of Lightwave Technology.

[11]  Gennian Ge,et al.  On (g, 4;1)-difference matrices , 2005, Discret. Math..

[12]  Pingzhi Fan,et al.  Constructions of optimal variable‐weight optical orthogonal codes , 2010 .

[13]  Pingzhi Fan,et al.  New Classes of Optimal Variable-Weight Optical Orthogonal Codes Based on Cyclic Difference Families , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[14]  Pingzhi Fan,et al.  Optimal Variable-Weight Optical Orthogonal Codes via Difference Packings , 2010, IEEE Transactions on Information Theory.

[15]  Pingzhi Fan,et al.  General Constructions of Optimal Variable-Weight Optical Orthogonal Codes , 2011, IEEE Transactions on Information Theory.

[16]  Dianhua Wu,et al.  Further results on optimal (v, {3, k}, 1, {1/2, 1/2})-OOCs for k=4, 5 , 2011, Discret. Math..