Further constructions of optimal variable-weight optical orthogonal codes
暂无分享,去创建一个
Pingzhi Fan | Naoki Suehiro | Dianhua Wu | Xiyang Li | P. Fan | N. Suehiro | Dianhua Wu | Xiyang Li
[1] J A John,et al. Cyclic Designs , 1987 .
[2] Marshall Hall,et al. Combinatorial Theory: Hall/Combinatorial , 1988 .
[3] Jawad A. Salehi,et al. Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..
[4] Guu-chang Yang. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements , 1996, IEEE Trans. Commun..
[5] Jianxing Yin,et al. Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..
[6] Ryoh Fuji-Hara,et al. Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.
[7] G. Ge,et al. Starters and related codes , 2000 .
[8] G. Ge,et al. Constructions for optimal (v, 4, 1) optical orthogonal codes , 2001, IEEE Trans. Inf. Theory.
[9] Jianxing Yin,et al. A General Construction for Optimal Cyclic Packing Designs , 2002, J. Comb. Theory, Ser. A.
[10] Jingshown Wu,et al. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems , 2005, Journal of Lightwave Technology.
[11] Gennian Ge,et al. On (g, 4;1)-difference matrices , 2005, Discret. Math..
[12] Pingzhi Fan,et al. Constructions of optimal variable‐weight optical orthogonal codes , 2010 .
[13] Pingzhi Fan,et al. New Classes of Optimal Variable-Weight Optical Orthogonal Codes Based on Cyclic Difference Families , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[14] Pingzhi Fan,et al. Optimal Variable-Weight Optical Orthogonal Codes via Difference Packings , 2010, IEEE Transactions on Information Theory.
[15] Pingzhi Fan,et al. General Constructions of Optimal Variable-Weight Optical Orthogonal Codes , 2011, IEEE Transactions on Information Theory.
[16] Dianhua Wu,et al. Further results on optimal (v, {3, k}, 1, {1/2, 1/2})-OOCs for k=4, 5 , 2011, Discret. Math..