Large barocaloric effect and pressure mediated electrocaloric effect in Pb0.99Nb0.02(Zr0.95Ti0.05)0.08O3 ceramics

Ferroelectric materials are being actively explored for next-generation solid-state cooling technology. Even though bulk materials possess an advantage in terms of overall heat extraction capacity, their performance is limited due to low adiabatic temperature change. In this regard, the present article explores enhanced cooling capacity of bulk polycrystalline Pb0.99Nb0.02(Zr0.95Ti0.05)0.08O3 (PNZT) through external-field mediation and coupled caloric effects. Barocaloric (BC) and electrocaloric (EC) effects were indirectly estimated using polarization versus electric field (P-E) loops (under varying pressure and temperature). It was observed that under applied pressure of 325 MPa, ∆TEC could be improved from 1 K to 4.5 K. Similarly, a peak unbiased ∆TBC of 1.5 K could be enhanced to 5.3 K under an electric field of 5 MV.m−1. These figures correspond to an improvement of ~400% over the unbiased values. The results are indicative of the potential of multicaloric cooling capacity of bulk ferroelectric materials. This article is protected by copyright. All rights reserved.

[1]  A. Chauhan,et al.  Elastocaloric and Piezocaloric Effects in Lead Zirconate Titanate Ceramics , 2016 .

[2]  A. Chauhan,et al.  Caloric Effects in Bulk Lead‐Free Ferroelectric Ceramics for Solid‐State Refrigeration , 2016 .

[3]  A. Chauhan,et al.  A review and analysis of the elasto-caloric effect for solidstate refrigeration devices: Challenges and opportunities , 2015 .

[4]  A. Chauhan,et al.  Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals: Modes of measurement , 2015 .

[5]  A. Chauhan,et al.  Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic , 2015 .

[6]  Christopher S. Lynch,et al.  Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate , 2015 .

[7]  A. Chauhan,et al.  Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals , 2015 .

[8]  A. Chauhan,et al.  Elastocaloric effect in ferroelectric ceramics , 2015 .

[9]  A. Chauhan,et al.  Enhanced Electrocaloric Effect in Pre‐stressed Ferroelectric Materials , 2015 .

[10]  Guangzu Zhang,et al.  Ferroelectric Polymer Nanocomposites for Room‐Temperature Electrocaloric Refrigeration , 2015, Advanced materials.

[11]  S. Beckman,et al.  Elastocaloric Response of PbTiO 3 Predicted from a First-Principles Effective Hamiltonian , 2014, 1404.5459.

[12]  X. Lou,et al.  Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO 3 single crystals , 2014 .

[13]  X. Chen,et al.  Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution , 2014 .

[14]  X. Lou,et al.  Giant room-temperature barocaloric effect and pressure-mediated electrocaloric effect in BaTiO3 single crystal , 2014 .

[15]  A. Planes,et al.  Thermodynamics of multicaloric effects in multiferroics , 2014 .

[16]  Qiming Zhang,et al.  Giant Electrocaloric Response Over A Broad Temperature Range in Modified BaTiO3 Ceramics , 2014 .

[17]  X. Lou,et al.  Giant mechanically-mediated electrocaloric effect in ultrathin ferroelectric capacitors at room temperature , 2014 .

[18]  X. Moya,et al.  Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. , 2012, Nature materials.

[19]  M. Vopson The multicaloric effect in multiferroic materials , 2012 .

[20]  I. Ponomareva,et al.  Giant elastocaloric effect in ferroelectric Ba 0.5 Sr 0.5 TiO 3 alloys from first-principles , 2012 .

[21]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[22]  L. Luo,et al.  Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 single crystal , 2012 .

[23]  Matjaz Valant,et al.  Electrocaloric materials for future solid-state refrigeration technologies , 2012 .

[24]  Dan Wang,et al.  Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems , 2012 .

[25]  X. Tan,et al.  The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics , 2011 .

[26]  S. Shi,et al.  The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO₃ thick film , 2011 .

[27]  M. Kosec,et al.  Influence of the critical point on the electrocaloric response of relaxor ferroelectrics , 2011 .

[28]  G. Manos,et al.  Statistical mechanical lattice model of the dual-peak electrocaloric effect in ferroelectric relaxors and the role of pressure , 2011 .

[29]  B. Liu,et al.  Enhancing the electrocaloric effect of PbZr0.4Ti0.6O3/PbTiO3 superlattices via composition tuning , 2011 .

[30]  Mihail C. Roco,et al.  Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook , 2011 .

[31]  J. U. Ahamed,et al.  A review on exergy analysis of vapor compression refrigeration system , 2011 .

[32]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[33]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[34]  J. Kreisel,et al.  Multiferroics - the challenge of coupling magnetism and ferroelectricity , 2009 .

[35]  Q. Jiang,et al.  Influence of thermal strains on the electrocaloric and dielectric properties of ferroelectric nanoshells , 2009 .

[36]  Kenji Uchino,et al.  Piezoelectric actuators 2006 , 2008 .

[37]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[38]  Pin Yang,et al.  Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics. , 2006 .

[39]  J. Swanson,et al.  Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[40]  M. Ibarra,et al.  Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd5Ge4. , 2003, Physical review letters.

[41]  D. Vanderbilt,et al.  Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure , 2003, cond-mat/0306205.

[42]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[43]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[44]  Wei Chen,et al.  A micro-electro-mechanical model for polarization switching of ferroelectric materials , 1998 .

[45]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[46]  J. D. Keck,et al.  Pressure-temperature phase diagrams for several modified lead zirconate ceramics , 1978 .

[47]  R. H. Dungan,et al.  Phase Relations and Electrical Parameters in the Ferroelectric‐Antiferroelectric Region of the System PbZrO3–PbTiO3‐PbNbO2O6 , 1962 .

[48]  R. Roth,et al.  Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate , 1955 .

[49]  G. Shirane,et al.  Crystal Structure of Pb(Zr-Ti)O3 , 1952 .