A monolithic Lagrangian meshfree scheme for Fluid–Structure Interaction problems within the OTM framework

Abstract We present a monolithic Lagrangian meshfree solution for Fluid–Structure Interaction (FSI) problems within the Optimal Transportation Meshfree (OTM) framework. The governing equations of the fluid and structure are formulated in the Lagrangian configuration and solved simultaneously in a monolithic way. Mainly, the fully discretized equations are constructed by leveraging on the OTM method to address the challenges in the Lagrangian description of the fluid domain. In this approach, the fluid–structure interface becomes an internal surface of the entire field, and the continuity and force equilibrium on the interface are automatically satisfied without any extra computations. The monolithic Lagrangian solution provides enhanced stability comparing to partitioning approaches and eliminates the problem of free surface and material interface tracking. The presented method enables a Direct Numerical Simulation (DNS) of the fluid flow with the absence of the convective terms. The accuracy and robustness of the OTM FSI approach are systematically investigated by the classical Blasius solution of the boundary layer problem. Furthermore, we illustrate the range and scope of the method through two examples: the impact of a rigid body on the fluid domain in a container and the interaction between the fluid and highly flexible structures in an open channel.

[1]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[2]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[3]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[4]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[5]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[6]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[7]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[8]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[9]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .

[10]  Rajeev K. Jaiman,et al.  Conservative load transfer along curved fluid-solid interface with non-matching meshes , 2006, J. Comput. Phys..

[11]  Bo Li,et al.  Optimal transportation meshfree approximation schemes for fluid and plastic flows , 2010 .

[12]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[13]  Eugenio Oñate,et al.  Analysis of some partitioned algorithms for fluid‐structure interaction , 2010 .

[14]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[15]  van Eh Harald Brummelen,et al.  A monolithic approach to fluid–structure interaction , 2004 .

[16]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[17]  Jan Vierendeels,et al.  Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion , 2005 .

[18]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[19]  Elias Balaras,et al.  A STRONG COUPLING SCHEME FOR FLUID-STRUCTURE INTERACTION PROBLEMS IN VISCOUS INCOMPRESSIBLE FLOWS , 2005 .

[20]  Jan Vierendeels,et al.  Stability of a coupling technique for partitioned solvers in FSI applications , 2008 .

[21]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[22]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[23]  Spencer J. Sherwin,et al.  A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies , 2002 .

[24]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[25]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[26]  Sheng-Lun Chuang SLAMMING OF RIGID WEDGE-SHAPED BODIES WITH VARIOUS DEADRISE ANGLES , 1966 .

[27]  M. Pittofrati,et al.  Rigid body water impact–experimental tests and numerical simulations using the SPH method , 2007 .

[28]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[29]  Michael Ortiz,et al.  Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .

[30]  I. Boyd,et al.  Blasius boundary layer solution with slip flow conditions , 2002 .

[31]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[32]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[33]  J. Monaghan,et al.  Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .

[34]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[35]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[36]  Peter Wriggers,et al.  Stabilization algorithm for the optimal transportation meshfree approximation scheme , 2018 .

[37]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[38]  M. Ortiz,et al.  Lagrangian finite element analysis of Newtonian fluid flows , 1998 .

[39]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[40]  Michael Ortiz,et al.  Verification and validation of the Optimal Transportation Meshfree (OTM) simulation of terminal ballistics , 2012 .

[41]  Georg C. Ganzenmüller,et al.  An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics , 2015 .

[42]  J. Ross Macdonald,et al.  Some Simple Isothermal Equations of State , 1966 .

[43]  Andrea Vigliotti,et al.  Crashworthiness of helicopters on water: Test and simulation of a full-scale WG30 impacting on water , 2003 .

[44]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[45]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[46]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[47]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[48]  Adrian C. Orifici,et al.  Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow , 2015 .

[49]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[50]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[51]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[52]  C. Villani Topics in Optimal Transportation , 2003 .

[53]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[54]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .