Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels.

[1]  J M Briggs,et al.  Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. , 2001, Biophysical journal.

[2]  D. C. Pearson,et al.  Brownian dynamics study of the interaction between plastocyanin and cytochrome f. , 1998, Biophysical journal.

[3]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[4]  R C Wade,et al.  Brownian dynamics simulation of protein-protein diffusional encounter. , 1998, Methods.

[5]  T. Ishii,et al.  Determinants of Apamin and d-Tubocurarine Block in SK Potassium Channels* , 1997, The Journal of Biological Chemistry.

[6]  C. Gottesmann,et al.  Sleep cycle disturbances induced by apamin, a selective blocker of Ca2+-activated K+ channels , 1996, Brain Research.

[7]  N. Marrion,et al.  Small-Conductance, Calcium-Activated Potassium Channels from Mammalian Brain , 1996, Science.

[8]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[9]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[10]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[11]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[12]  C. Cambillau,et al.  Solution structure of P05-NH2, a scorpion toxin analog with high affinity for the apamin-sensitive potassium channel. , 1993, Biochemistry.

[13]  C. Miller,et al.  Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. , 1993, Biochemistry.

[14]  H. Rochat,et al.  P05, a new leiurotoxin I-like scorpion toxin: synthesis and structure-activity relationships of the alpha-amidated analog, a ligand of Ca(2+)-activated K+ channels with increased affinity. , 1993, Biochemistry.

[15]  J A McCammon,et al.  Poisson-Boltzmann analysis of the lambda repressor-operator interaction. , 1992, Biophysical journal.

[16]  M. Behrens,et al.  Increase of apamin receptors in skeletal muscle induced by colchicine: possible role in myotonia. , 1992, The American journal of physiology.

[17]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[18]  B. Bontempi,et al.  Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes , 1991, Brain Research.

[19]  F. Albericio,et al.  Binding and toxicity of apamin. Characterization of the active site. , 1991, European journal of biochemistry.

[20]  G. Breese,et al.  Effects of apamin and nicotinic acetylcholine receptor antagonists on inferior collicular seizures. , 1990, European journal of pharmacology.

[21]  M. Lazdunski,et al.  Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear magnetic resonance , 1990, FEBS letters.

[22]  D. Wemmer,et al.  Solution structure of apamin determined by nuclear magnetic resonance and distance geometry. , 1988, Biochemistry.

[23]  G. Giménez-Gallego,et al.  Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. , 1988, The Journal of biological chemistry.

[24]  Scott H. Northrup,et al.  Electrostatic effects in the brownian dynamics of association and orientation of heme proteins , 1987 .

[25]  P. Strong,et al.  Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium‐activated potassium channel , 1986, FEBS letters.

[26]  J. García-Sancho,et al.  Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels. , 1986, Biochimica et biophysica acta.

[27]  M. Lazdunski,et al.  The Ca2+‐dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin. , 1982, The EMBO journal.

[28]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[29]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[30]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[31]  H. Knull,et al.  Brownian dynamics simulations of interactions between aldolase and G- or F-actin. , 1999, Biophysical journal.

[32]  F. Gurd,et al.  Calculation of electrostatic interactions in proteins. , 1986, Methods in enzymology.

[33]  L. Vyklický [Calcium-activated potassium channels]. , 1985, Ceskoslovenska fysiologie.

[34]  J. B. Matthew Electrostatic effects in proteins. , 1985, Annual review of biophysics and biophysical chemistry.

[35]  R. G. Ackman [49] Gas-liquid chromatography of fatty acids and esters , 1969 .

[36]  H. Berman,et al.  Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank , 2022 .