Use of rhizobacteria for biocontrol

[1]  D. Weller,et al.  Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent, Pseudomonas aureofaciens , 1993 .

[2]  S. Lindow,et al.  A Biological Sensor for Iron That is Available to Pseudomonas Fluorescens Inhabiting the Plant Rhizosphere , 1993 .

[3]  L. Thomashow,et al.  Genetic and Biochemical Determinants of Phenazine Antibiotic Production in Fluorescent Pseudomonads that Suppress Take-All Disease of Wheat , 1993 .

[4]  F. O'Gara,et al.  Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. , 1992, Microbiological reviews.

[5]  F. O'Gara,et al.  Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain , 1992, Applied and Environmental Microbiology.

[6]  M. Mazzola,et al.  Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats , 1992, Applied and environmental microbiology.

[7]  L. Thomashow,et al.  Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. , 1992, Molecular plant-microbe interactions : MPMI.

[8]  C. Buell,et al.  Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent pseudomonad. , 1992, Molecular plant-microbe interactions : MPMI.

[9]  C. Keel,et al.  Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Keel,et al.  Influence of enhanced antibiotic production in pseudomonas fluorescens strain cha0 on its disease suppressive capacity , 1992 .

[11]  F. O'Gara,et al.  Isolation of 2,4-Diacetylphloroglucinol from a Fluorescent Pseudomonad and Investigation of Physiological Parameters Influencing Its Production , 1992, Applied and environmental microbiology.

[12]  C. Keel,et al.  Suppression of root diseases by Pseudomonas fluorescens CHA0 - importance of the bacterial seconday metabolite 2,4-diacetylphloroglucinol , 1992 .

[13]  B. Ownley Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. , 1992 .

[14]  L. Thomashow,et al.  Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R , 1991, Applied and environmental microbiology.

[15]  D. Weller,et al.  Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain , 1991, Applied and environmental microbiology.

[16]  J. Vanderleyden,et al.  Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescens , 1991 .

[17]  J. Bennett,et al.  Microbial stimulation of plant growth and protection from disease , 1991 .

[18]  B. Vallee,et al.  Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  B. Wüthrich,et al.  Secondary Metabolites of Pseudomonas Fluorescens Strain CHA0 Involved in the Suppression of Root Diseases , 1991 .

[20]  L. Thomashow,et al.  Genetic Aspects of Phenazine Antibiotic Production by Fluorescent Pseudomonads That Suppress Take-All Disease of Wheat , 1991 .

[21]  T. Suslow,et al.  Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens , 1991 .

[22]  C. Bull Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strains 2-79 , 1991 .

[23]  G. Wei Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria , 1991 .

[24]  B. Vallee,et al.  Zinc coordination, function, and structure of zinc enzymes and other proteins. , 1990, Biochemistry.

[25]  L. Thomashow,et al.  Production of the Antibiotic Phenazine-1-Carboxylic Acid by Fluorescent Pseudomonas Species in the Rhizosphere of Wheat , 1990, Applied and environmental microbiology.

[26]  N. Gutterson Microbial Fungicides: Recent Approaches to Elucidating Mechanisms , 1990 .

[27]  C. Keel,et al.  Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions , 1989, The EMBO journal.

[28]  C. Keel Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions , 1989 .

[29]  David M. Weller,et al.  Biological control of soilborne plant pathogens in the rhizosphere with bacteria , 1988 .

[30]  L. Thomashow,et al.  Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici , 1988, Journal of bacteriology.

[31]  C. Tepper,et al.  Molecular Studies on the Role of a Root Surface Agglutinin in Adherence and Colonization by Pseudomonas putida , 1988, Applied and environmental microbiology.

[32]  L. Janik,et al.  Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132) , 1987, Antimicrobial Agents and Chemotherapy.

[33]  J. G. Hancock,et al.  Disease-Suppressive Soil and Root-Colonizing Bacteria , 1982, Science.

[34]  M. Schroth,et al.  Selected topics in biological control. , 1981, Annual review of microbiology.