Diffusion of Finite-Size Particles in Confined Geometries

The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle’s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.

[1]  Maria Bruna,et al.  Excluded-volume effects in stochastic models of diffusion , 2012 .

[2]  C. Santangelo,et al.  Diffusion and binding of finite-size particles in confined geometries. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Kinetic equations for diffusion in the presence of entropic barriers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Marek Bodnar,et al.  Derivation of macroscopic equations for individual cell‐based models: a formal approach , 2005 .

[5]  P. Hänggi,et al.  Brownian motion exhibiting absolute negative mobility. , 2002, Physical review letters.

[6]  Bruce J. Ackerson,et al.  Correlations for dilute hard core suspensions , 1982 .

[7]  J. Dahlberg,et al.  Molecular biology. , 1977, Science.

[8]  Matthew J Simpson,et al.  Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches , 2012, Journal of The Royal Society Interface.

[9]  Maria Bruna,et al.  Diffusion of multiple species with excluded-volume effects. , 2012, The Journal of chemical physics.

[10]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[11]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[12]  A Scala,et al.  Event-driven Brownian dynamics for hard spheres. , 2007, The Journal of chemical physics.

[13]  Hermann Rost Diffusion de spheres dures dans la droite reelle : comportement macroscopique et equilibre local , 1984 .

[14]  P. S. Burada,et al.  Entropic transport of finite size particles , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Robert Zwanzig,et al.  Diffusion past an entropy barrier , 1992 .

[16]  J. Álvarez-Ramírez,et al.  Diffusion in one-dimensional channels with zero-mean time-periodic tilting forces. , 2012, The Journal of chemical physics.

[17]  Stefan Howorka,et al.  Nanopore Analytics: Sensing of Single Molecules , 2009 .

[18]  L. Lizana,et al.  Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. S. Burada,et al.  Diffusion in confined geometries. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Kevin Burrage,et al.  Sources of anomalous diffusion on cell membranes: a Monte Carlo study. , 2007, Biophysical journal.

[21]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[22]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[23]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[24]  M. Coppens,et al.  Modeling of Diffusion in Zeolites , 2000 .

[25]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[26]  G. Slater,et al.  Bidirectional Transport of Polyelectrolytes Using Self-Modulating Entropic Ratchets , 1997 .

[27]  J. Keller,et al.  Particle distribution functions in suspensions , 1989 .

[28]  Maria Bruna,et al.  Excluded-volume effects in the diffusion of hard spheres. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Reinhard Lipowsky,et al.  Movements of molecular motors: Ratchets, random walks and traffic phenomena , 2005, cond-mat/0502527.

[30]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[31]  P. Maini,et al.  A practical guide to stochastic simulations of reaction-diffusion processes , 2007, 0704.1908.

[32]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .