The personal genome browser: visualizing functions of genetic variants

Advances in high-throughput sequencing technologies have brought us into the individual genome era. Projects such as the 1000 Genomes Project have led the individual genome sequencing to become more and more popular. How to visualize, analyse and annotate individual genomes with knowledge bases to support genome studies and personalized healthcare is still a big challenge. The Personal Genome Browser (PGB) is developed to provide comprehensive functional annotation and visualization for individual genomes based on the genetic–molecular–phenotypic model. Investigators can easily view individual genetic variants, such as single nucleotide variants (SNVs), INDELs and structural variations (SVs), as well as genomic features and phenotypes associated to the individual genetic variants. The PGB especially highlights potential functional variants using the PGB built-in method or SIFT/PolyPhen2 scores. Moreover, the functional risks of genes could be evaluated by scanning individual genetic variants on the whole genome, a chromosome, or a cytoband based on functional implications of the variants. Investigators can then navigate to high risk genes on the scanned individual genome. The PGB accepts Variant Call Format (VCF) and Genetic Variation Format (GVF) files as the input. The functional annotation of input individual genome variants can be visualized in real time by well-defined symbols and shapes. The PGB is available at http://www.pgbrowser.org/.

[1]  N. Campbell Genetic association database , 2004, Nature Reviews Genetics.

[2]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[3]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[4]  Tim J. P. Hubbard,et al.  Dalliance: interactive genome viewing on the web , 2011, Bioinform..

[5]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[6]  Jian Wang,et al.  The YH database: the first Asian diploid genome database , 2008, Nucleic Acids Res..

[7]  Takeshi Itoh,et al.  Tasuke: a web-based visualization program for large-scale resequencing data , 2013, Bioinform..

[8]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[9]  Jie Zhang,et al.  SpliceDisease database: linking RNA splicing and disease , 2011, Nucleic Acids Res..

[10]  J. Lupski,et al.  The complete genome of an individual by massively parallel DNA sequencing , 2008, Nature.

[11]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[12]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[13]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[14]  Dario Strbenac,et al.  Savant Genome Browser 2: visualization and analysis for population-scale genomics , 2012, Nucleic Acids Res..

[15]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[16]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[17]  Yuan Lin,et al.  The HuRef Browser: a web resource for individual human genomics , 2008, Nucleic Acids Res..

[18]  R. Altman,et al.  Pharmacogenomics Knowledge for Personalized Medicine , 2012, Clinical pharmacology and therapeutics.

[19]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[20]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[21]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[22]  Dan M Roden,et al.  A rare variant in MYH6 is associated with high risk of sick sinus syndrome , 2011, Nature Genetics.

[23]  Pak Chung Sham,et al.  GWASdb: a database for human genetic variants identified by genome-wide association studies , 2011, Nucleic Acids Res..

[24]  Galt P. Barber,et al.  BigWig and BigBed: enabling browsing of large distributed datasets , 2010, Bioinform..

[25]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[26]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[27]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[28]  Karen Eilbeck,et al.  A standard variation file format for human genome sequences , 2010, Genome Biology.

[29]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2011 , 2011, Nucleic Acids Res..

[30]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[31]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[32]  Xing Chen,et al.  LncRNADisease: a database for long-non-coding RNA-associated diseases , 2012, Nucleic Acids Res..

[33]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[34]  Oscar Westesson,et al.  Visualizing next-generation sequencing data with JBrowse , 2013, Briefings Bioinform..

[35]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[36]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[37]  Laurent Gil,et al.  Ensembl 2013 , 2012, Nucleic Acids Res..

[38]  Heng Li,et al.  Tabix: fast retrieval of sequence features from generic TAB-delimited files , 2011, Bioinform..

[39]  Anton Nekrutenko,et al.  NGS analyses by visualization with Trackster , 2012, Nature Biotechnology.

[40]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[41]  Alexander A. Morgan,et al.  Clinical assessment incorporating a personal genome , 2010, The Lancet.