2014 The global presymplectic geometry of degenerate Lagrangian systems is investigated. A geometric constraint algorithm proposed earlier by us is used, in conjunction with techniques developed by Klein, to define and solve « consistent Lagrangian equations of motion » . This algorithm enables us to prove an equivalence theorem for the Lagrangian and Hamiltonian formulations of dynamical systems which are described by degenerate Lagrangians. RESUME. 2014 On examine, dans ce travail, la geometric présymplectique globale des systemes Lagrangiens irreguliers. L’emploi d’un « algorithme des contraintes » precedemment propose par les auteurs [5], et des techniques developpees par J. Klein [2], permet d’etablir, sous certaines hypotheses precises, un « theoreme d’équivalence » pour les formulations Lagrangienne et Hamiltonienne de systemes dynamiques decrits par des Lagrangiens irreguliers.
[1]
Mark J. Gotay,et al.
Geometric constraint theory and the Dirac-Bergmann theory of constraints
,
1979
.
[2]
Mark J. Gotay,et al.
Presymplectic manifolds and the Dirac-Bergmann theory of constraints
,
1978
.
[3]
H. P..
Annales de l'Institut Henri Poincaré
,
1931,
Nature.
[4]
C. Godbillon.
Géométrie différentielle et mécanique analytique
,
1969
.
[5]
J. M. Nester,et al.
Presymplectic lagrangian systems. II : the second-order equation problem
,
1980
.
[6]
P J Fox,et al.
THE FOUNDATIONS OF MECHANICS.
,
1918,
Science.