Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations

Abstract In this paper, the meshless local radial point interpolation (MLRPI) method is applied to simulate three space dimensional nonlinear wave equation of the form u tt + α u t + β u = u xx + u yy + u zz + δ g ( u ) u t + f ( x , y , z , t ) , 0 x , y , z 1 , t > 0 subject to given appropriate initial and Dirichlet boundary conditions and then a new spectral meshless radial point interpolation (SMRPI) method is proposed to solve the mentioned problem. The main drawback of methods in fully 3-D problems is the large computational costs. In the MLRPI method, all integrations are carried out locally over small quadrature domains of regular shapes such as spheres or cubes. In innovative SMRPI method, it is not needed to any integration. The radial point interpolation method is proposed to construct shape functions for MLRPI and basis functions for SMRPI. A weak formulation with a Heaviside step function transforms the set of governing equations into local integral equations on local subdomains in MLRPI whereas the operational matrices converts easily the governing equations (even high order) into linear system of equations in SMRPI. A two-step time discretization method is employed to approximate the time derivatives. To treat the nonlinearity part, a kind of predictor–corrector scheme combined with one-step time discretization and Crank–Nicolson technique is adopted. A comparison study of the efficiency and accuracy of the MLRPI and SMRPI method is given by applying on mentioned problem. Convergence studies in the numerical examples show that the SMRPI method possesses excellent rates of convergence.

[1]  K. Lonngren,et al.  Introduction to wave phenomena , 1985 .

[2]  Mehdi Dehghan,et al.  On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation , 2005 .

[3]  YuanTong Gu,et al.  A BOUNDARY RADIAL POINT INTERPOLATION METHOD (BRPIM) FOR 2-D STRUCTURAL ANALYSES , 2003 .

[4]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[5]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[6]  M. Dehghan A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications , 2006 .

[7]  A.P.S. Selvadurai,et al.  Partial differential equations in mechanics , 2000 .

[8]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[9]  Satya N. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics , 2000 .

[10]  Vladimir Sladek,et al.  A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation , 2013 .

[11]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[12]  K. Bathe,et al.  The method of finite spheres , 2000 .

[13]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[14]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[15]  Mehdi Dehghan,et al.  Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation , 2010 .

[16]  Stephan T. Grilli,et al.  A fully non‐linear model for three‐dimensional overturning waves over an arbitrary bottom , 2001 .

[17]  Mehdi Dehghan,et al.  A method based on meshless approach for the numerical solution of the two‐space dimensional hyperbolic telegraph equation , 2012 .

[18]  K. M. Liew,et al.  Numerical study of the three-dimensional wave equation using the mesh-free kp-Ritz method , 2013 .

[19]  Carlos J. S. Alves,et al.  Numerical comparison of two meshfree methods for acoustic wave scattering , 2005 .

[20]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[21]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[22]  Paul W. Cleary,et al.  Modelling confined multi-material heat and mass flows using SPH , 1998 .

[23]  S. Abbasbandy,et al.  Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations , 2012 .

[24]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[25]  S. Abbasbandy,et al.  A meshless method for two-dimensional diffusion equation with an integral condition , 2010 .

[26]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[27]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[28]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[29]  Li Guangyao,et al.  A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem , 2006 .

[30]  Satya N. Atluri,et al.  A Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics , 2004 .

[31]  R. J. Astley,et al.  The partition of unity finite element method for short wave acoustic propagation on non‐uniform potential flows , 2006 .

[32]  G. Y. Li,et al.  A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation , 2006 .

[33]  Guirong Liu,et al.  Point interpolation method based on local residual formulation using radial basis functions , 2002 .

[34]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[35]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[36]  YuanTong Gu,et al.  A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids , 2001 .

[37]  R. K. Mohanty,et al.  A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations , 2013 .

[38]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[39]  YuanTong Gu,et al.  A boundary point interpolation method for stress analysis of solids , 2002 .

[40]  Utku Senturk,et al.  Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method , 2011 .

[41]  F. J. Seabra-Santos,et al.  A Petrov–Galerkin finite element scheme for the regularized long wave equation , 2004 .

[42]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[43]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[44]  Zhenya Yan,et al.  Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Mehdi Dehghan,et al.  A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation , 2012 .

[46]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[47]  Pihua Wen,et al.  Meshless local Petrov–Galerkin (MLPG) method for wave propagation in 3D poroelastic solids , 2010 .

[48]  S. Abbasbandy,et al.  MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions , 2011 .

[49]  Yan Zhang,et al.  Letter to the Editor: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation , 2008 .

[50]  T. Belytschko,et al.  Element-free galerkin methods for static and dynamic fracture , 1995 .

[51]  Mohammad Shekarchi,et al.  A Multiresolution Prewavelet-Based Adaptive Refinement Scheme for RBF Approximations of Nearly Singular Problems , 2009 .

[52]  Mohammad Shekarchi,et al.  A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential PDEs , 2008 .

[53]  A. G. Bratsos An improved numerical scheme for the sine‐Gordon equation in 2+1 dimensions , 2008 .

[54]  E. J. Kansa,et al.  Application of the Multiquadric Method for Numerical Solution of Elliptic Partial Differential Equations , 2022 .

[55]  Hertong Song,et al.  A stable finite difference scheme for solving a hyperbolic two‐step model in a 3D micro sphere exposed to ultrashort‐pulsed lasers , 2006 .

[56]  Ewald Krämer,et al.  A New Meshless Collocation Method for Partial Differential Equations , 2011 .

[57]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[58]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[59]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[60]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[61]  Stephen Nettel Wave Physics: Oscillations - Solitons - Chaos , 1992 .

[62]  Mehdi Dehghan,et al.  The combination of collocation, finite difference, and multigrid methods for solution of the two-dimensional wave equation , 2008 .

[63]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[64]  K. Liew,et al.  The improved element-free Galerkin method for three-dimensional wave equation , 2012 .

[65]  P. Bouillard,et al.  A wave-oriented meshless formulation for acoustical and vibro-acoustical applications , 2004 .

[66]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[67]  I. Babuska,et al.  The partition of unity finite element method , 1996 .